A Circuit-Based Attack on a Linear
Congruential Pseudorandom Number Generator

March 6, 2011

Abstract

In this chapter, I will describe the steps necessary to break the pseu-
dorandom number generator used in conjunction with the AES pipeline.
In order to break the generator, an attacker must determine the values of
constants in the generating equation. Solving for these constants requires
the extended Euclidean algorithm, which is a recursive algorithm requir-
ing many stages of calculation. In the end, I will demonstrate that an
optimal circuit for breaking the generator will require a large circuit area
that would be difficult to conceal as a backdoor on an AES accelerator.

1 Linear congruential generators
Linear congruential generators are a class of generators that have the form
Xn = (aX(n—1) +c)modm

where a, ¢, and m are constants. m is often chosen to be the word size of the
computer architecture. When m is a power of 2, a should be chosen so that
amod 8 = 5. ¢ should share no common factor with m/[1].

2 Attacking the linear congruential generator

In order to break the PRNG, an attacker must determine the generating algo-
rithm and the constants used in the algorithm, thereby gaining the ability to
predict the next number in a string of random numbers. We assume that the
attacker knows that the generating algorithm is a linear congruential generator
(which is easily determined|2]), and we assume that the attacker may record a
history of recently generated numbers.

2.1 Determining constant m

The attacker may be able to determine the value of m via prior knowledge of
the computer architecture. Due to the speed requirement on the PRNG, the
PRNG designer does not have many choices for the value of m.



2.2 Determining constant a

The value of a can be solved for algebraically once the attacker records three
consecutive outputs of the generator, x,y, and z.
From the generating equation of the PRNG,

y = ax + ¢ (mod m) (1)

z =ay + ¢ (modm) (2)
Subtracting the two equations we obtain:
(z —y) = aly — x) (modm)

Determining the value of a requires solving this equation in modular space
to isolate a, which would involve finding the modular inverse of (y — ). Finding
the modular inverse of a number is more involved than simple division, and we
will investigate it calculation method in the next section.

2.3 Determining constant c
Again from equations land 2, we obtain an equation to solve for c.
(y? — zz) = c(y — ) (mod m)

Note that solving for ¢ also requires finding the modular inverse of (y — x).

3 Solving for modular inverses using the extended
Euclidean algorithm

The optimal method for determining the modular inverse is via the extended
Euclidean algorithm[3]. In the following section, we manipulate the general form
of equations that the extended Euclidean algorithm to show that the algorithm
may be used to break the PRNG.

3.1 The extended Euclidean algorithm

The extended Euclidean algorithm solves for equations of the form

pu~+ qu = ged(p, q)

where p and ¢ are known constants.
In the special case that p and ¢ are coprime (have no common factors), the
equation takes on the special form

pu+qu=1



This equation can be written in modular arithmetic form:

pu =1 (mod q) (3)

In this form, v is the number of modular bases, g, required to satisfy the
identity. We ignore the significance of v.

3.2 Applying the extended Euclidean algorithm

Our goal is to solve for the modular inverse of (y — x), which, expressed in
modular arithmetic form, is to solve for the equation

(y—z)(y — ) (mod m) (4)

This equation is identical in form to 3, so long as our two known variables
(y—2) and m are coprime. (y—z) will be odd because the outputs of the PRNG
alternate between even and odd numbers on each cycle—this is guaranteed
by the requirement that ¢ must be odd. m is the word size of the computer
architecture, and therefore is a power of 2. With (y — x) odd and m a power of
2, our known variables are coprime; therefore, 4fits the form of3.

References

[1] Knuth, D. E. (1981). Seminumerical Algorithms. In D. E. Knuth, The Art of
Computer Programming (Vol. 2, pp. 9-37, 170). Reading, Mass.: Addison-
Wesley.

[2] Marsaglia, G. (2003). Random Number Generators. Journal of Modern Ap-
plied Statistical Methods , 2 (1), 2-13.

[3] Liu, C.-L., Horng, G., & Liu, H.-Y. (2008). Computing the modular inverses
is as simple as computing the GCDs. Finite Fields and Their Applications ,
14 (1), 65-75.



