HCDC: A Top-Down Perspective

Yipeng Huang
May 2, 2014
Outline

• HCDC & computational robotics
 – Speeding up inverse kinematics using hardware

• HCDC & smooth optimization
 – Solving linear programming using gradient descent

• HCDC & solving linear equations
 – Inverting matrices using gradient descent on analog circuits

• HCDC & solving ordinary differential equations
 – Putting the integrators to their best use

• HCDC host system
 – Performance evaluation
 – Digital microcontroller interface
Where to Look for HCDC Applications

• Use HCDC analog-digital chip to accelerate applications
 – Better than digital alone
 – Pick up where analog computers of 1960’s left off

• Look for problems that digital computers struggle at
 – Applications that have a continuous core problem
 – Emergent, computationally intensive programs that deal with real world
 – Robotics, sensor, and actuator programs

• Tackle problems that didn’t exist / impossible in 1960’s
 – Return to the classical analog programs: simulations, optimizations
 – How digital computing can assist where analog failed
A Core Robot Algorithm: Inverse Kinematics

- How to control a robot’s joints to achieve desired pose
 - Input: current robot geometry
 - Output: required joint increments

- Computationally intensive problem all limbed robots must solve

- Beyond controlling single arms and legs, many larger problems rely on inverse kinematics
 - redundant manipulators
 - multiple end effectors
 - inverse dynamics
A Digital Accelerator for Inverse Kinematics

• Inverse kinematics not well suited for normal digital architectures
 – Entirely floating point array, matrix operations
 – 40% of cycles in inverting matrices
 – 15% of cycles in sine, cosine operations

• We’ve created an accelerator to solve IK via damped least squares
 – Dedicated sine, cosine function generators
 – Parallel, fixed-point functional units
 – Solves IK problem in 4µs: compare against 10ms for general algorithm on CPU

• At coarse level, future HCDC chips may include similar accelerators
 – Include more core robotics algorithms
 – Map portions to adjacent analog circuitry
A Hierarchy of Optimization Problems

- Problem statement:
 - Optimize a utility function
 - Given a set of resources
 - Where each resource is subject to constraints

- Mixed integer non-linear programming
- Continuous variables: non-linear programming
- Convex utility function: convex programming
- Quadratic utility: quadratic programming
- Linearity of all variables: linear programming
Smooth Optimization: Linear Programming

- General form
 Maximize $z = c^T x$
 Subject to constraints $Ax \leq b$

- Example
 Maximize $z = 2x_1 - 3x_2 + 3x_2$
 Subject to constraints
 - $x_1 + 2x_2 - 2x_3 \leq 4$
 - $x_1 + x_2 - x_3 \leq 7$
 - $-x_1 - x_2 + x_3 \leq -7$
 - $x_1, x_1, x_1 \geq 0$

- All linear programming problems can transform to this form
 - Write as maximization problem
 - Ensure bounded constraints
Interior Point Method for Linear Programs

- Transform problem space so current point is “centered”
 - If you’re already near boundary, you might not reach global maximum

- Take a step in the direction that increases utility most
 - Intuitively, you should consume the resources that result in more utility

- Return solutions back to original space
 - Update the slack variables; how much of each resource do I have left?

- Iterate

- HCDC speeds this up: rapidly taking infinitely small steps
Considerations on Mapping to HCDC

• HCDC version of interior point method needs $|x| + |v|$ integrators
 – But we only have four, more if we team up chips
 – People already routinely solve linear programming problems with ~100K variables

• Try cyclic or block coordinate-descent decomposition
 – In contrast to the interior point method, a conjugate gradient descent
 – The literature on analog computing hints at using coordinate descent optimization

• Tackle non-convex optimization, which digital is slow at
 – Branch and bound method: divide and conquer a non-convex exploration space
 – Digital computers cannot tackle problems larger than ~100 variables
 – Use HCDC to accelerate the underlying linear program solver
Solving Differential Equations Using HCDC

• In addition to the proposed applications, we have already demonstrated solving ordinary differential equations
 – As part of verification and validation of chip before tapeout

• Equation tests: check solving whole equations
 – 2nd order linear ODE
 – 2nd order nonlinear ODE
 – 2nd order transcendental ODE
 • Different datapaths for same equation
 • Different gain and range settings for same equation

• >40 unique chip tests
Performance Model

• Timing: we can now accurately model timing overhead costs of analog vs. digital computation
 – I will talk about this

• Power: we will rely on physical chip to measure power cost of analog vs. digital computation
 – Vastly improve previous estimates about analog efficiencies

• Area: we are building intuition on how well HCDC may scale
 – Ability to combine more integrators; communication costs

• Accuracy: we need to quantitatively measure error
 – Would analog excel at stiff, unstable, chaotic equations?
Timing: Startup & Calibration

• Conservative assumptions: 5MHz SPI clock
 – resulting in 208KHz HCDC controller clock

• Upon startup, all configuration bits have to be written zero
 – One time cost of 4ms

• Configuration portion of initial calibration would take 7ms
 – Assuming all tunable parameters must be tuned using binary search

• Each configuration takes 3.7ms in the worst case
 – Average case ~2ms for real equations
 – More aggressive SPI clock decreases this time linearly
 – Important for enabling time multiplexing on chip
HCDC Host System

- Arduino microcontroller
 - Bridge between computer and HCDC chip
 - Programmable through Arduino’s software tools
 - Native digital serial interface and software controlled serial interface
 - 10-bit ADCs
 - Memory for stored programs