HCDC Workloads, Evaluation & HCDC 2

Yipeng Huang July 30, 2015

Workload Classes

- **Open loop** x' = Ax + b
- Closed loop Ax = b
- These are the core of machine learning and scientific computation work
 - Dense matrix: SVM, regression, optimization
 - Sparse matrix: PDEs, ODEs

State of the Art for Linear Systems

• While linear systems are extremely well studied, some problems remain:

Stiffness

• we need solvers that handle high dynamic range in values or frequency

Large scale

• we need ways to decompose large problems and solve in parallel

• Economy

 we need ability to use cheap but unreliable or inaccurate algorithms, in addition to powerful and expensive ones

Can Continuous Time Computation Help?

All prevailing techniques rely on time stepping

- While SIMD vector processors and GPUs allow simultaneous operations, problems still done step-by-step
- Time stepping introduces the problem of stiffness

Investigate <u>where</u> is the efficiency advantage of HCDC coming from:

Dataflow?

• Easily replicated in FPGA, digital ASIC, DDA

Continuous time computation?

- Is the continuous time evolution tackling stiffness,
- Is it doing a better job than preconditioners, implicit solvers, direct methods

Multigrid

Decompose problem into grid of grids

Each grid has limited number of variables

In solving each grid, precision not required

• Each solution only has to precondition & provide initial guess for next, finer grid

Permits use of small, cheap, low dynamic range, unreliable linear solvers

- Jacobi iteration often used
- Alternatively, just one step of conjugate gradients
- How cheap can we go?
- Steepest descent? Fixed point steepest descent? HCDC?

Comparison Targets

• DDA

- Built fixed-point, floating-point, variable-order DDA
- Also tried stochastic DDA
- I plan on adding support for steepest descent, conjugate gradients

• GPU

• Working my way through GPU multigrid and conjugate gradients code

• CPU

• Built collection of optimization, linear systems, ODE solvers

What Analog Computing Needs

- In building HCDC to obtain continuous-time computation, we gave up:
- Accuracy and precision
- Large problem size
- Programmability

Accuracy

Hybrid digital-analog iteration for Ax = b

- Solve system of equations of residuals in analog computer, obtain correction
- Add correction term to solution using digital computer
- Each stage "zooms in" to accurate solution

Scaling everything to fit HCDC's limited range

- A terms need to fit in multipliers, so scale by alpha
- x terms need to fit in integrators and ADCs, so scale by beta
- To keep problem correct, b is scaled by both alpha and beta
- And finally make sure b terms fit in the DACs

• Example:

- Ideal solution = [-1047.273926, -1679.667969]
- HCDC solution = [-1047.772095, -1680.471802]

Large problem size

Digital computers easily handle all problems we currently do on HCDC

• Most powerful, precise, stiff solvers still 100x faster than HCDC, accounting for time to set up HCDC, measure results

HCDC may have advantage once scaled up

- Configuration of HCDC takes N^2 time, N is # of variables and/or integrators
- Conjugate gradients takes N^3 time

Urgently need to understand efficient problem decomposition techniques like multigrid

Programmability

HCDC 2 increases programming speed using

- Higher SPI clock speed
- Hardware support for transmitting configuration bits
- Software optimizations

- HCDC 2 synthesis & simulation
- Try using HCDC to help multigrid methods
- Build GPU codes for comparison

The nonlinear world...

- While linear problems have broad appeal, and therefore are good for computer architecture and workloads-based research,
- Nonlinear problems are also possible in HCDC;
- But specific nonlinear problems are only interesting to specific fields