
HCDC Workloads, 
Evaluation & HCDC 2

Yipeng Huang
July 30, 2015



Workload Classes
• Open loop

x’ = Ax + b

• Closed loop
Ax = b

• These are the core of machine learning and 
scientific computation work
• Dense matrix: SVM, regression, optimization
• Sparse matrix: PDEs, ODEs



State of the Art for Linear Systems
• While linear systems are extremely well studied, 

some problems remain:

• Stiffness
• we need solvers that handle high dynamic range in values or frequency

• Large scale
• we need ways to decompose large problems and solve in parallel

• Economy
• we need ability to use cheap but unreliable or inaccurate algorithms, in 

addition to powerful and expensive ones



Can Continuous Time Computation Help?
• All prevailing techniques rely on time stepping

• While SIMD vector processors and GPUs allow simultaneous operations, 
problems still done step-by-step

• Time stepping introduces the problem of stiffness

• Investigate where is the efficiency advantage of 
HCDC coming from:

• Dataflow?
• Easily replicated in FPGA, digital ASIC, DDA

• Continuous time computation?
• Is the continuous time evolution tackling stiffness,
• Is it doing a better job than preconditioners, implicit solvers, direct methods 



Multigrid
• Decompose problem into grid of grids

• Each grid has limited number of variables

• In solving each grid, precision not required
• Each solution only has to precondition & provide initial guess for next, finer grid

• Permits use of small, cheap, low dynamic range, 
unreliable linear solvers
• Jacobi iteration often used
• Alternatively, just one step of conjugate gradients
• How cheap can we go?
• Steepest descent? Fixed point steepest descent? HCDC?



Comparison Targets
• DDA

• Built fixed-point, floating-point, variable-order DDA
• Also tried stochastic DDA
• I plan on adding support for steepest descent, conjugate gradients

• GPU
• Working my way through GPU multigrid and conjugate gradients code

• CPU
• Built collection of optimization, linear systems, ODE solvers



What Analog Computing Needs
• In building HCDC to obtain continuous-time 

computation, we gave up:

• Accuracy and precision

• Large problem size

• Programmability



Accuracy
• Hybrid digital-analog iteration for Ax = b

• Solve system of equations of residuals in analog computer, obtain correction
• Add correction term to solution using digital computer
• Each stage “zooms in” to accurate solution

• Scaling everything to fit HCDC’s limited range
• A terms need to fit in multipliers, so scale by alpha
• x terms need to fit in integrators and ADCs, so scale by beta
• To keep problem correct, b is scaled by both alpha and beta
• And finally make sure b terms fit in the DACs

• Example:
• Ideal solution = [-1047.273926, -1679.667969]
• HCDC solution = [-1047.772095, -1680.471802]



Large problem size
• Digital computers easily handle all problems we 

currently do on HCDC
• Most powerful, precise, stiff solvers still 100x faster than HCDC, accounting for 

time to set up HCDC, measure results

• HCDC may have advantage once scaled up
• Configuration of HCDC takes N^2 time, N is # of variables and/or integrators
• Conjugate gradients takes N^3 time

• Urgently need to understand efficient problem 
decomposition techniques like multigrid



Programmability
• HCDC 2 increases programming speed using

• Higher SPI clock speed
• Hardware support for transmitting configuration bits
• Software optimizations



Next Steps
• HCDC 2 synthesis & simulation

• Try using HCDC to help multigrid methods

• Build GPU codes for comparison

• The nonlinear world…
• While linear problems have broad appeal, and therefore are good for computer 

architecture and workloads-based research,
• Nonlinear problems are also possible in HCDC;
• But specific nonlinear problems are only interesting to specific fields


