
a language for designing board games

Prepared by Team Strat
May 9, 2010

Lauren Pully
Project Manager

lep2128@columbia.edu

Jesse Bentert
Language Guru

jrb2137@columbia.edu

John Graham
System Architect

jwg2116@columbia.edu

Daniel Wilkey
System Integrator

dgw2109@columbia.edu

Yipeng Huang
Tester & Validator

yh2315@columbia.edu

AIntroduction

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

A - 1

ROLL
a language for designing board games

Introduction

ROLL is an easy-to-use programming language designed to facilitate the implementation of
children’s board games. Aspiring ROLL developers are not required to have an extensive
programming background, only a creative and unique idea for a game. Well-implemented games
in ROLL contain a custom game board, multiple players, an element of chance, and choices
available to the players that influence the outcome of the game. A program written in ROLL
could serve as the back-end of a complete game program that may include a graphical user
interface implemented in another language.

Data Types

Player: An end-user playing the game that has properties including a name and pieces. Players
have the ability to execute moves and are presented with choices on their turns during game play.
Depending on the specific game, the choices the player makes should directly impact their odds
of winning.

Piece: A property of a player that interacts with the board. It is aware of the current tile that its
pieces occupy.

Game: An abstract entity that comprises all aspects of the ROLL framework. A game has a
board, a list of players, and either a set of dice or a deck of cards. A game also contains an
associated logic that dictates the manner in which the game progresses, the steps required to win
it, and the goal state.

Board: A board is an entity that maintains the state of the current game. A board has tiles,
occupying pieces, and associated actions on each tile.

Tile: A property of a board that contains a unique index, the location of successor tiles accessible
to a player during a move action, and an associated action-listener tied to the event of landing
upon it.

Dice: Dice are entities that generate random numbers, which then influence the game’s
progression in some way. The ROLL programmer decides how the random number generated
during a player’s turn influences the player’s progress in the game.

Deck: Deck is an aggregation of cards, one of which may be drawn during a player’s turn. The
ROLL programmer decides how a card influences the player’s progress in the game.

Features

Roll is motivated by the notion that many people have creative ideas for computer board games,
but not the time nor the patience to write their own game logic framework. ROLL helps

A - 2

programmers by providing a generalized game framework for running games, allowing
programmers to focus their efforts on the specifics of their ideas. Programming is hard, and we
want to make creating new board games easy. By creating a language that gives programmers the
flexibility to create complex board games, the possibilities are unlimited.

Simple

ROLL is intuitive. Programmers can pick it up and create games without extensive coding
experience. The syntax is easy to learn and a board game's features can be easily modified.

Flexible

A programmer using ROLL can implement games with varying degrees of complexity. A simple
game can have players take turns rolling a die, determining a winner based on the first player to
reach an end location. However, ROLL allows for more complexity: players can have more input
into how a piece moves, the dice can be replaced by deck of unique cards, and even individual
tiles in the board can have special properties. Game tiles, for example, can cause players to draw
cards, move players to specific tiles, modify a player's property (i.e. amount of money), or even
win the game. A programmer drawing upon complex elements of ROLL can thereby introduce
strategy to winning the game.

Dynamic

ROLL provides the freedom to leave decisions up to the player, allowing prompts throughout
game play for user input. For example, the player might be able to choose how many people are
going to play the game, or he might be able to decide in which direction he wants to move on a
particular turn.

Extendable

A game program created using ROLL would be playable through the command-line interface.
The game developer using ROLL can choose to create a more refined textual or graphical user
interface. ROLL facilitates such extensions by outputting game state information and player
input prompts in a consistent and easily readable format. This output can integrate seamlessly
with a variety of possible front-ends written in any popular graphics-capable language.

Using ROLL

Property-Oriented

A game written in ROLL would be organized into sections of code defining properties of the
individual elements that comprise a game. A programmer using ROLL would define properties
of the board, tiles, players, dice, and deck, and then specify the actions that are available to the
player.

A - 3

Parsing and Compilation

The logic framework for ROLL is written in Java. Source code from ROLL is compiled into a
set of Java class files before execution. Java serves as a robust and high-performance platform
for running programs written in ROLL. The compiled program created in ROLL benefits from
the platform neutrality and interpreted nature of programs that run on the Java virtual machine.

Summary

ROLL simplifies computer board game creation for the everyday programmer!

BLanguage
Tutorial

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

B - 1

ROLL Language Tutorial

Lauren Pully - lep2128
Jesse Bentert - jrb2137
John Graham - jwg2116
Dan Wilkey - dgw2109
Yipeng Huang - yh2315

1. Introduction ..2

2. The Default Game ..2

3. The Hello World Program..3

4. The Default Game: What Lies Beneath ...7

5. Raising the Stakes: a More Complex Program ..15

6. Conclusion..25

B - 2

1. Introduction

This tutorial will guide someone unfamiliar with the ROLL language through the process of

writing basic programs. It takes a top-down approach, introducing the most basic program to

start and progressing to a few that are bit more complex. From a high level perspective, a ROLL

program is comprised of three sections, which we will refer to as blocks: Players, Board, and

Dice/Deck. Each block can be customized by the programmer to implement the specific rules

associated with his or her game. The following sample programs will demonstrate how to create

board games using ROLL. We begin with the simplest possible program, one containing no

body.

	

2. The Default Game
Program 1	

The program shown above is clearly not very interesting in terms of code. The first word,

Game, indicates the declaration of a new ROLL program. The second word, in this case

Default, specifies the name of the board game (i.e. any word may go here). Within the curly

braces would be the implementation of the game; however in this case none is provided. The

programmer need only define those blocks he wishes to tailor to the specifics of his game. For

each of the rest, the ROLL framework’s corresponding default implementation will be used in its

place. Note that for each of the blocks defined, their order is fixed: Players followed by Board

followed by Dice/Deck (A slash is used between Dice and Deck to indicate at most one of the

B - 3

two can be implemented). If a ROLL program is compiled without any implementation (such as

this one), all three default blocks are generated, yielding the so-called ‘Default Game’. The

default ROLL game boasts 10 tiles, a single die with six faces, and can accommodate anywhere

from two to six players. Players will sequentially take turns rolling the die and moving their

piece forward the number of spaces shown on the die. The game ends when a player reaches the

tenth and final tile and is declared the winner. When this program is run, an entire game is

simulated and printed out. The only user input required for this game is the number of players

and their names. The output of this game would be similar to the following:

Figure 1	

	

3. The Hello World Program

Many languages begin with a “Hello World” program. Although such a program is not

particularly relevant to this language, here is what it would look like.

B - 4

Program 2	

The output of this program is essentially just the text string “Hello, World”; however it is

preceded by a line that starts every game: the name of the game being played surrounded by

asterisks. Although there are a few more layers of complexity here that will be discussed later

on, the general idea of the program is simple. It starts a game, displays “Hello, world!” and then

begins the first player's turn. The beginning of the turn is implemented to end the game and the

program terminates.

Now let's discuss some of the syntax of the Hello World program. The first line of code

within the game definition is a comment. As with popular languages like C and Java, two

consecutive forward slashes indicate a line comment. All characters from the slashes to the end

of the line are ignored by the compiler. Note that there are no block comments in ROLL.

Following the comment are definitions of two of the three possible blocks: Players and

Board. Notice that blocks in ROLL do not accept name parameters, as was seen with Game.

Figure 2	

B - 5

To begin a new block, one needs only to provide the block title, followed by a set of curly braces

(which enclose the implementation of that block). Each of the blocks contains several associated

statement categories that the programmer may choose to provide. As will be seen later, these

statements can take three forms: setting block-level fields, creating objects, and defining

functions. Most block statements can be omitted, in which case a default value is used for them

(the one exception comes in the Deck block and is discussed later). Indeed, for the Hello World

program, most of the block-level statement categories of Players and Board are left out.

In the Players Block, one statement category not omitted is the setupPlayers()

function, which is where the programmer gleans information from the user about the current set

of players. For example, here one could obtain the number of players for the current game as

well as their names. When the program executes, this function will be the first called.

setupPlayers() is an example of what we call dynamic functions: functions that the

programmer is allowed to provide implementation for, but cannot ever call himself. These are

called automatically by the ROLL framework at specific times during the game's flow of control.

The names and signatures of dynamic functions are predefined; the programmer may not define

and implement their own custom functions. Refer to the LRM for a complete list of dynamic

functions, along with descriptions of the arguments they accept, in which blocks they may be

defined, and at what point in the flow of control these functions are called. Note the syntax for

defining dynamic functions in ROLL, as seen in setupPlayers() above. The keyword

define is followed by the name of the function and then a set of parentheses containing the

formal parameters. In ROLL, setupPlayers() takes no arguments.

B - 6

In this case, setupPlayers() does not do very much. It calls print(), a function

which prints text to the standard output. This is an example of the second type of function in

ROLL: static functions. These are functions that the programmer cannot define himself; they

may only be called (within dynamic functions). To call print(), a text string (surrounded by

double quotes) is explicitly provided as the actual parameter. All print statements are followed

by a newline when output.

Notice the manner in which lines of code are terminated. All lines conclude with

semicolons, save for one general exception: functions and block definitions take curly braces to

delimit their beginning and ending points. See that lines 1 and 14 do not end in semicolons,

since Game meets this criterion.

On line 8 the Board block is defined. This is where one provides the details of their game

board. The board-level field NumTiles, seen on line 9, specifies the number of tiles on the

board. In our Hello World program, this field does not serve any purpose, except to demonstrate

how block-level fields are set. On line 10 we define the preRoll() function (another dynamic

function), which is executed before each player's turn. This function is meant to give the

programmer an opportunity to handle any actions that must be carried out every time a new turn

starts. Here, it just calls declareWinner(), a static function that terminates the current

game. This call is made to suppress the default game from running (which otherwise always

happens, as shown by the simulated game output in figure 1) by declaring a winner before

any player has a turn. This will cause only the text “Hello, world!” to be printed and none of the

standard game state information. This program does not actually play a game and only serves

for demonstration.

B - 7

4. The Default Game: What Lies Beneath
	

Although Program 1 of this tutorial does technically provide all the necessary

implementation to construct the default game (i.e. none), let’s look at a ROLL program one

could write that would provide the exact same functionality without relying on any default

behavior. Each of the three main blocks will be discussed individually, albeit out of order. To

construct a working program out of them, you would place their definitions (Programs 3-3,

3-1, 3-2) into a single file, within an enclosing named Game object. Notice that we listed

Program 3-3 first in the above ordering. This refers to the Players block, which as

discussed before must come first in the program. However, due to some complex productions it

contains, this block will be discussed last herein. We begin with the Board implementation.

Program 3- 1	

B - 8

On line 1, we define the Board block in the same fashion as we did for the Hello World

game. On line 2 we set the Board block’s only field, NumTiles, which represents the number

of tiles there will be on the board. Beginning on line 3, the individual tiles of the board are

defined. All tile instantiations begin with the keyword make, which indicates that an object is

being constructed. The next word specifies the kind of object; the one in this example is Tile.

Tile takes a variable number of arguments for its instantiation, which is why arguments are

named individually. For each tile, the first argument that is set is the id argument. id is a

unique integer value between 0 and NumTiles-1 used to identify that Tile. The next two

specified arguments are next and prev (previous). These represent the ids of the following

and preceding tiles, respectively, in the context of a sequential movement of a piece along the

tiles.

For example, when a player rolls, his piece would proceed from its current tile location to the

tile with id matching the value stored in that tile’s next attribute. The player would then

continue as such, following the chain of next links, until having moved the appropriate number

of tiles. Conversely, if moving backwards along the list of tiles, the piece would proceed in

precisely the same manner, but this time following the chain of prev links. Named argument

assignment is done with the colon operator using the general form, <argument name> :

<argument value>. The id of the tile on line 6 is therefore assigned the value 3. Additionally,

the id of its next attribute is set to 4 and the id of its prev attribute is set to 2. All of the tiles

follow this general form, except for the first one (on line 3) and the last one (on line 12). For the

tile on line 12, the next attribute of this tile is set to itself, 9. The reason for this, which will

become clear in discussing the roll() function, is that we do not want the piece to go off of

B - 9

the end of the board. If someone rolls a 6 from tile 8, for instance, then his piece will move to

tile 9 and stay there for the remainder of the 5 moves. For the same reason, the prev attribute

of the tile on line 3 is also set to itself. Thus, the idea behind the tiles in the Board block is

pretty intuitive. Pieces are moved according to the value on the die (or on the card drawn) and

iterated along the list of tiles on the board. Once a player’s move has completed, the

goalCheck() dynamic function is called.

You can see the syntax for defining goalCheck() in Program 3 is exactly the same as

the setupPlayers() definition in Program 2. The arguments here are the id number of

the player whose turn it is (playerID), and the id of the tile on which the player has landed

(tileID). Note that here, and in all dynamic functions in ROLL, the programmer has no

control over the formal parameters or their types. So for goalcheck(), the function has to be

called with the parameters shown. Line 16 shows the only conditional statement in ROLL, the

if-then-else. The condition here checks if the variable TileID is equal to 9. The

parentheses to the right of the if contain a condition to test that must evaluate to true or false. If

the expression evaluates to true (in this case indicating the person is currently on the last tile),

then the body of the conditional is executed. In the body of this if statement, we again see the

declareWinner() function. However, this time it contains an argument: the id of the

winning player. In this simple default game, the first person to reach the 10th and final tile is

declared the winner.

Note that in writing the Board block, we first set the block-level fields (just NumTiles),

then created objects (Tiles), and lastly defined a function (goalCheck). All blocks in ROLL

must follow this order for statement categories: fields, objects, and then functions.

B - 10

Now we move our attention to the definition of the Dice block for the default game. The

programmer decides the number of dice in the game and the number of faces each die will have.

Program 3- 2	

	

The Dice block has no block-level fields, so we start with its objects. For each die the

programmer wants in his game, he has to explicitly make an individual Die object; this is done

by typing make Die() once for each die. The number of faces on the die is declared by

setting the value of the faces attribute (line 2). For games with multiple dice, the sum of the

values rolled on all the dice determines the total roll for a given player in a single turn. Each roll

of a die is simulated by randomly generating a number from 1 to the number of faces on that die.

Since all of the game’s dice are rolled for every player's turn, the programmer can adjust the

relative probabilities of different total values occurring through the number of dice and the

number of faces on each die. For example, if there are two dice declared, each with six faces,

then the probability of rolling either a 2 or 12 is very small (1 in 36), while the probability of

getting a 7 is much higher (1 in 6). In the game shown, there is a single Die declared, so each

value has equal probability.

Within the Dice definition, the programmer can implement the roll() function, shown on

lines 4-7. roll() accepts two arguments, the amount that was rolled and the playerID

B - 11

whose turn it is. This function serves as the intermediary between rolling the dice and moving

the player’s piece. Here, the programmer has the opportunity to vary how a value of the die is

interpreted. For example, rolling a certain value might allow the player’s piece to move

backwards. If a player’s piece or pieces are to be moved during a roll, then move() or

moveReverse() should be called; these are static functions that execute the move action.

move() accepts three arguments: the id of the player whose piece is being moved, the id of

his piece to be moved, and the number of spaces to move it. All ids in ROLL are successive

integers beginning with 0. In the default case, each player is limited to one piece, so 0 is used to

refer to the first (and only) player piece. Lastly, since the number of spaces to move the piece is

exactly the amount rolled, it is passed directly as an argument to the move() function.

The final block that we discuss is Players. Here the programmer specifies the minimum

and maximum number of players, the number of pieces each player has, and the location on the

board where each player’s piece(s) begins and ends. Additionally, as alluded to in the discussion

of the Hello World program, any run-time player attributes that need to be recorded, such as

player names and the exact number of people playing the current game, may be set in the

setupPlayers() method, shown below.

B - 12

Program 3- 3	

We start by setting the block-level fields in lines 2 through 5. Note that they must appear in

this order (although you may omit any if you want to use its default value). In lines 2 and 3, the

maximum and minimum number of players allowed is set. In line 4, the number of pieces per

player is defined by setting the field NumPieces. The starting location of each player is set on

line 5, using a new construction. The notation seen here, a comma-delimited list of integers

surrounded by curly braces, is the general form for in-place integer array instantiation. In this

case we have created an array of six integers (because there are at most six players), all of value

0. This means that to start the game, every player’s piece is placed on the 0th tile. Note that

since the minimum number of players in this particular game is only two, it is possible that not

all six values placed in the array will be used for a given game. Only the first n values are used

in a game of n players. The first number placed in this array is the 0th index of the array, and

thus corresponds to the player with id 0. For example, if a 2 is placed in the fourth position of

B - 13

the array, then all pieces of the player with id 3 (4 minus 1, to account for arrays beginning at

index 0) will begin on the tile with id 2.

The Players block has no objects that may be created, so we proceed to its dynamic

function. In line 6, the setupPlayers() function is defined. In the default game, this is

where the programmer asks how many players there are, and what each of their names is. Line 8

uses the print() statement, seen before. In line 9 we introduce one of the three main input

constructions, promptRange(), which accepts three arguments. The first argument is the

integer variable to be set by user input. In this case, NumPlayers is a block-level field of

Players that should be set for every played game. The second argument is a lower limit to the

value that may be entered. The third argument is an upper limit to this value. Therefore,

because MinPlayers is 2 and MaxPlayers is 6, the user must enter a number between these

two values, inclusively. The preceding print() statement in line 8 is meant to give context to

the selection provided in line 9.

The loop construct in ROLL is called in line 11, the for-each loop. The general form of a

for-each loop in ROLL is for(int <variable> : <array>). Each value in the

array to the right of the colon is sequentially given to the variable to the left of the colon, and the

block of code within its curly braces is executed once for each of these values. Notice from the

required variable type, the programmer is only allowed to iterate over integer arrays in ROLL.

We see here new shorthand for in-place instantiation of an integer array. The array is populated

with all integer values between the number to the left of the tilde and the one to the right of it,

inclusively. For example, if NumPlayers were set to 4, then this array would take on the

values 1, 2, 3, and 4. In this case, a primitive, 1, is used as the lower bound and an arithmetic

B - 14

expression using a variable, NumPlayers-1, is used as the upper bound. Any combination of

these is acceptable for both bounds.

In the body of the for-each loop, on line 13, we see another print() statement. As

before, it contains a text sequence; however, several arguments are present this time, each

separated by | (vertical bar) operators. This operator in ROLL is used for text concatenation.

When placed between text fields (which are surrounded by double quotes), the operator appends

the second onto the end of the first. When an argument is not encased in double quotes, it is

assumed to be either a primitive or a variable. In this case, it is converted to its textual

equivalent and then concatenation proceeds as before. As seen with the second concatenated

parameter, the addition operator in ROLL (+) is different from the concatenation operator (|),

thus all possible arithmetic expressions will be parsed unambiguously, unlike some other popular

general-purpose languages.

Line 13 shows the second method of input, promptName(). This function accepts a single

argument, which has to be a player's name attribute (player attributes are discussed in the next

paragraph). It allows the user to enter any sequence of characters with which to set the field. As

before, the print statement indicates the context for the value being set.

Within the body of the promptName() function call, a new construction is seen for

accessing objects by their ids. We now introduce the field PlayerList, which is an array of

the player objects. It is never set explicitly by the programmer (it is created behind the scenes),

but the programmer has access to it in any of the three blocks. One can access a specific player

object from this list by specifying the id of that player within square brackets that follow the list

name, a la an array index in programming languages like Java. So PlayerList[2] returns

B - 15

the player object whose id is 2. Moreover, each Player object has two accessible public

attributes that can be accessed by appending a period and then the attribute title. The first of

these is name, a text attribute in which a player’s name may be stored (line 14). The other is

PieceList, the list of that player’s piece objects. Individual pieces are specified in the same

manner that individual players are selected from the PlayerList: by piece id in square

brackets. For instance, a programmer can refer to the first player’s second piece using

PlayerList[0].PieceList[1]. For a complete list of ROLL objects and their accessible

attributes, please refer to the language reference manual.

And thus we have finished the default definitions and implementations of blocks: Players,

Dice, and Board. The above block implementations provide identical functionality to leaving

all of them out. Knowing this, it would be unnecessary to write a ROLL program taken exactly

from the code provided above. From here on out, the Language Tutorial will discuss the more

advanced (and certainly fun!) features of ROLL.

5. Raising the Stakes: a More Complex Program

 To demonstrate the more advanced ROLL concepts, we will show a variation of the

popular board game Chutes and Ladders. Chutes and Ladders is another progress game in which

the first player to reach the end wins. This game features ladders on some spaces, which when

landed upon cause the player to move ahead a certain number of spaces. Conversely, some tiles

feature chutes, which cause the player to go back a certain number of spaces. We have also

provided additional functionality not found in the classic Chutes and Ladders game to illustrate

some other ROLL features. For example, each Player will have two pieces instead of one, and

B - 16

both of the Player’s pieces must reach the last tile in order to win. Additionally, instead of

rolling a die to determine how many spaces to move, we are going to instead use a simple deck

of cards to illustrate how a programmer could use the deck block in place of the dice block.

 This program begins with another Players definition.

 As you can see above, this is a skeletal implementation of the Players block. Many of the

fields seen in the Default Game Players block (Program 3-3) are omitted because we are satisfied

with the underlying default implementations. The first line provided in the above block is the

gui toggle variable. By default, this is set to 0, which causes the game to be played from the

standard out, as seen with Figures 1 and 2. In this case, we are explicitly setting its value to 1 in

order to allow this game to use a default gui that the ROLL language provides. Screen shots of

this interface will be shown after full discussion of program 4. The next value set in this block is

the NumPieces field, which we set to 2.

 We now introduce a new field known as FinishOn. This parallels the StartOn array

seen earlier. Instead of aggregating the indices of tiles on which a player's pieces will begin, this

array contains the indices of tiles on which their pieces will end. The interpretation of this

concept is left up to the user. Our intention is that this array will be used in the goalCheck()

function to determine whether or not a player has won. Clearly, this array is most pertinent in

games whose object is to reach some ending tile. Because Program 4 is such a game, its

Program 4- 1	

	

B - 17

goalCheck() function (which will be shown later) makes use of this variable. We now shift

our attention to the Board block.

Program 4- 2	

	

This game is declared to have 11 tiles (set on line 2); however, only 4 of these 11 are

explicitly instantiated. The tiles not instantiated are automatically generated using standard

attributes. By standard attributes, we mean that the next field is set to one greater than the id,

and the prev field is set to one less than the id. The only exceptions to these rules are the first

tile, where the prev index is set to itself, 0, and the last tile, whose next index is also set to

B - 18

itself, NumTiles – 1. These exceptions are made because it is assumed that the board has

definite beginning and ending points.* By default, one of these standard attribute tiles is created

for every missing id. In this case, the id’s 0, 2, 4, 5, 8, 9, and 10 are not instantiated, and so a

standard attribute tile will be generated for each of these. We now introduce two new tile

attributes: accessible and landsOn.

 The accessible attribute allows you to associate an integer array with a tile. Its

argument is the array instantiation syntax seen before. Our intention is that the programmer

may place tile ids in the array, which may be of use to indicate tiles besides next and prev that

are accessible when special conditions are satisfied. In this case, if a player’s turn ends on a

ladder or chute, then his piece should “jump” to a separate tile. Since there is only one tile to

which he can move, our accessible array is of length 1. The number in the accessible

array provides the id of the end tile of the chute or ladder. To handle this special action, the

programmer must implement a landsOn() function, whose name is given as the final attribute

of these instantiations.

 The landsOn() dynamic function is called once a player’s piece has finished moving

for a given turn. The function is specific to each tile, and is only called if the tile landed upon

has a landsOn() function specified. In this program, we define two landsOn() functions,

one for ladder tiles and one for chute tiles.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

* If instead you wanted to make the board circular, you would need to set the next field of

the last tile to the first tile and the prev field of the first tile to the last tile (in the style of linked lists).

B - 19

 The landsOn() functions are our first example of named function definitions. You can

see on line 8 that the first of these is named ladder. The reasoning for naming the landsOn()

functions is that oftentimes the same function will be associated with several tiles. This allows

for code reuse, as only the function name is passed as an argument to each Tile.

 The landsOn() function accepts three arguments: the id of the player who is moving,

the id of the piece that has landed, and the id of the tile on which it has landed. As always, the

programmer has no control over the arguments. In the print statement on lines 10-11, text

concatenation is done as before. Note that the last concatenated text sequence references the id

of the target tile through the accessible array. In this case, there is only one such tile, so it’s

accessed by id 0.

 Line 12 introduces the jump() function. Similar to move() and moveReverse(),

this construction allows a programmer to change the occupied tile of a player’s piece. In contrast

to its two counterparts, jump() moves the piece directly to the target tile, without traversing the

normal chain of next/previous links. The piece should jump directly to the target tile. This

behavior is achieved by accepting the id of the target tile as the third argument, rather than

accepting the number of spaces to traverse (which is what move() and moveReverse() do).

Additionally, the landsOn() function of the target tile is not called after the jump is executed.

The first two arguments allow specification of the piece to be moved through the id of its owning

player and the id of the piece. Due to its behavior, jump() is most commonly called from

within the landsOn() function.

 Notice that in the chute landsOn() function, the jump() call is exactly the same as its

counterpart in ladder. The only difference between these two landsOn() functions is the

B - 20

specifics of their print() statements. One indicates the action is favorable (ladder) while the

other informs the user of a less than desirable result (chute).

 Beginning on line 22, we see a slightly more complex example of a goalcheck()

function. This function needs to verify that all of a player’s pieces have reached the goal tile, as

opposed to just one. If this condition is met, that player is declared the winner.

 On line 24, we use an integer flag to keep track of the current game state. This is the first

time an integer variable is explicitly instantiated. The general form for integer declaration is:

int <variable name>; (optionally, assignment can occur on this same line as

demonstrated here). We begin with the assumption that the game has ended, then test for

conditions that would prove otherwise. On lines 25 through 31, we see another example of the

for-each loop. During each iteration of the loop, we test whether or not the current piece is

occupying the goal tile. If this condition is ever false, the gameOver variable is set to 0 to

indicate that the game has not yet ended. In order to determine if the current player's piece is on

its goal tile, we refer to the index of the FinishOn array matching his player id. If the value

stored there is equivalent to the occupied tile of the current piece, the condition is satisfied. Note

that in this particular game, all players much reach the same tile in order to win (refer to line 4 of

Program 4-1); therefore it is possible to replace the call to the FinishOn array with the number

10. After the for-each loop has terminated, the value of the gameOver variable is inspected.

If still 1, the current player is declared the winner, and the game terminates.

 Note that the board block is the only one that allows for more than one function to be

defined (there are the preRoll, goalCheck, and landsOn functions). The order in which

B - 21

you place the functions does not matter as long as all of the landsOn functions appear

consecutively.

 We now move on to the definition of the Deck; it is used here in place of a Dice block.

In the programs seen so far, the movement of pieces was dictated by the value rolled on the dice.

Alternatively, the programmer might want to use a deck of cards to dictate this movement. This

can be done by defining a deck block. A Deck is a set of cards from which to draw on each

player turn. If a Deck is defined, then a Dice block cannot also be defined. Each card in the

deck has a value associated with it, which can be interpreted however the programmer desires. A

difference between a deck and a set of dice is that when we used dice, the same roll()

function had to be called no matter what value was rolled. With a deck, however, a different

roll() function can be associated with each unique card. Also, a deck gives the programmer

control over the quantity of each value in the deck, as opposed to a die where all you can specify

is the number of faces (and each face has an equal probability of being selected). Lastly, the

Deck block contains the only example in ROLL of a field that is not defaulted. The programmer

is required to define at least one Card object if the Deck is defined. Not only does it not make

sense that the deck would have no cards (meaning there is nothing to handle the flow of player

turn control!), but additionally this default behavior is provided in the more basic Dice block.

The programmer only writes a Deck if the Dice defaults are insufficient for his game. Let’s

now take a look at the Deck block for our sample program.

	

B - 22

Program 4- 3	

Line 1 contains the syntax for instantiating the deck. The first field that has to be set is

HasReplacement, which must be either 0 or 1. If it is 0, then as cards are drawn from the

deck, the deck gets smaller and smaller until none are left, at which time all cards are then

shuffled and the process begins again. If it is 1, then after each card is drawn, it is placed back

into the deck, and the deck is reshuffled. Lines 3 through 7 show how to create individual Card

B - 23

objects in the deck. The first parameter for creating a Card is value, which can be any integer.

The next is quantity, which indicates how many of that type of card will be in the deck. The last

is roll, which allows the programmer to specify which roll() function he would like to be

called when that card is drawn (which he will define below it).

Another instance of a named function, directionRoll, is defined starting on line 9.

Similar to landsOn(), a named roll() function allows the same definitions to be associated

with several unique cards. Note that all roll() functions in the Deck block must be named

functions (you may not write the unnamed one used in the Dice block). We now introduce the

third and final input construction in ROLL, promptList(). Similar to promptRange(), it

accepts an integer variable as its first argument whose value will be set with the input. Unlike

promptRange(), promptList() has only two arguments, the second of which is an array

of integer values. Each value of the array is printed out for the user to choose amongst. On line

14, when calling promptList(), we store the user input into a variable that the programmer

creates himself, an integer variable called choice. In line 17 is the declaration of another integer

variable called direction, which is used to store the direction in which the player wants to move.

We see the first call of moveReverse() on line 27, which is just like move() except, as the

name implies, the piece will move backwards instead of forwards. If the user chooses to go

forward, however, the normal move() function is called (line 22).

Additionally, there is a second roll() function declared, called goAgain, in lines 31-

39. This shows how you may change the NextTurn field (line 38) to manipulate the order of

player moves. The value it is set to become the id of the player whose turn will be next. In this

B - 24

game, a draw of card 3 rewards the player with a second consecutive turn; thus the value of

NextTurn is reset to the value of the current player.

As with program 3, the three blocks of program 4 may be placed, in order, inside of a

named Game block to construct a working program. To compile this program using the ROLL

compiler, place your program file into the same directory that houses all of the ROLL compiler

files. From this directory you may use the provided shell script rollc to compile your program by

typing rollc followed by a space and then the filename. Then to execute it, simply type roll.

Here is a screen shot of what program 3 might look like if you ran it:

Figure	
 3	

B - 25

6. Conclusion

At this point we have covered the essential structures and syntax of the ROLL

programming language. Using these basic tools, complex and powerful board games may be

created. For more detailed descriptions and examples of all the constructs in ROLL, please refer

to the language reference manual. Game on!	

CPrimer on
Organizing

ROLL Code

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

C - 1

Primer on Organizing ROLL Code
The following pages contain diagrams that illustrate how the code in a ROLL program is organized.

This chapter is meant to be a high-level overview of how a ROLL program is structured. Please refer to the
page numbers throughout the glossary below and tree diagrams to find the page in the Language Reference
Manual where each is discussed in more detail.

Glossary of terms used in the ROLL language and in the diagrams

1. Blocks
These are the four major sections of the ROLL program. These include the Players, Board, Dice,
and Deck blocks. They represent the things you would find in a board game box you buy at the store.

See page D - 13 of the Language Reference Manual for details about blocks.

2. Block-level components
The lines of code you see in a block fall into one of three statement categories: block-level fields, object
data types, and functions. We will go into more detail of each category in the following glossary items.

Note that you have to keep your statement categories written in the same order we just mentioned. You
should initialize your fields, make your objects, and define your functions in that order when you write a
block.

3. Block-level fields
These fields are the properties of the block they belong to. They are variables that are defined by the
ROLL language itself because they are important to the functioning of the block.

You can find block-level fields in three flavors. They are always one of the following: integers (most
fields are of this category), integer arrays (the only ones are StartOn and FinishOn in the Players
block), or arrays of objects, which we will discuss in the next glossary item.

See page D - 14 of the Language Reference Manual for details about fields.

4. Object data types
These are items of a board game that you would find as part of a block. The object data types in ROLL
are Player, Tile, Die, and Card. These are objects that exist as multiple copies in any board game
session.

Each object is in charge of holding information about itself. This information, which we called object
attributes, will be discussed in the next glossary item.

With the exception of Player, the ROLL programmer creates objects using the make command.

See page D - 18 of the Language Reference Manual for details about objects.

5. Object attributes
This is the information that is stored in the object.

You can find object attributes in three flavors. They are always one of the following: integers (most
attributes are of this category), names of functions (so you can attach a named function to the object), or,
in one case, an array of more objects (we’re talking about PieceList, which belongs to Player).

See page D - 18 of the Language Reference Manual for details about attributes.

C - 2

6. Functions (Dynamic Functions)
These are the methods in the ROLL language. Functions are the last of the three statement categories
that go into writing a block. There are two different kinds of functions in ROLL, unnamed and named
functions.

See page D - 25 of the Language Reference Manual for details about functions, and to learn about the
difference between unnamed and named functions.

How to organize your ROLL program
The elements of a ROLL program have to be written in the order of a top-to-bottom traversal of the trees on the
next four pages. In other words, if an element A comes on top of element B in tree diagrams, element A should
come before element B in your ROLL source code.

If you choose to leave out any element in your ROLL program, the elements you do choose to implement have
to come in the order shown in the diagrams.

C - 3

object	
 attributes	

block-­‐level	
 1ields,	

objects,	
 and	

functions	

block-­‐level	

statement	

categories	

blocks	

Players	

1ields	

GUI:	
 see	
 page	
 D	

-­‐	
 14	

MaxPlayers:	
 see	

page	
 D	
 -­‐	
 15	

MinPlayers:	
 see	

page	
 D	
 -­‐	
 15	

NumPieces:	
 see	

page	
 D	
 -­‐	
 15	

StartOn:	
 see	

page	
 D	
 -­‐	
 15	

FinishOn:	
 see	

page	
 D	
 -­‐	
 15	

NumPlayers:	

see	
 page	
 D	
 -­‐	
 16	

PlayersList:	
 see	

page	
 D	
 -­‐	
 16	

object	
 data	

types	

Player:	
 see	
 page	

D	
 -­‐	
 18	

name:	
 see	
 page	

D	
 -­‐	
 20	

PieceList:	
 see	

page	
 D	
 -­‐	
 20	

functions	

unnamed	
 (single	

implementation)	

functions	

setupPlayers():	

see	
 page	
 D	
 -­‐	
 27	

C - 4

object	
 attributes	

block-­‐level	
 1ields,	

objects,	
 and	

functions	

block-­‐level	

statement	
 categories	
 blocks	

Board	

1ields	

NumTiles:	
 see	

page	
 D	
 -­‐	
 16	

TileList:	
 see	
 page	

D	
 -­‐	
 16	

object	
 data	
 types	
 Tile:	
 see	
 page	
 D	
 -­‐	

18	

id:	
 see	
 page	
 D	
 -­‐	
 20	

next:	
 see	
 page	
 D	
 -­‐	

20	

prev:	
 see	
 page	
 D	
 -­‐	

21	

accessible:	
 see	

page	
 D	
 -­‐	
 21	

landsOn:	
 see	
 page	

D	
 -­‐	
 21	

functions	

unnamed	
 (single	

implementation)	

functions	

preRoll(int	

playerID):	
 see	

page	
 D	
 -­‐	
 27	

goalCheck(int	

playerID,	
 int	
 tileID):	

see	
 page	
 D	
 -­‐	
 28	

named	
 (multiple	

implementation)	

functions	

landsOn(int	

playerID,	
 int	
 pieceID,	

int	
 tileID):	
 see	
 page	

D	
 -­‐	
 29	

C - 5

object	
 attributes	
 block-­‐level	
 1ields,	
 objects,	

and	
 functions	

block-­‐level	
 statement	

categories	
 blocks	

Dice	

1ields	
 NextTurn:	
 see	
 page	
 D	

-­‐	
 17	

object	
 data	
 types	
 Die:	
 see	
 page	
 D	
 -­‐	
 18	
 faces:	
 see	
 page	
 D	
 -­‐	
 21	

functions	
 unnamed	
 (single	

de1inition)	
 functions	

roll(int	
 value,	
 int	

playerID):	
 see	
 page	
 D	
 -­‐	

28	

C - 6

object	
 attributes	
 block-­‐level	
 1ields,	
 objects,	

and	
 functions	

block-­‐level	
 statement	

categories	
 blocks	

Deck	

1ields	

HasReplacement:	
 see	

page	
 D	
 -­‐	
 16	

NextTurn:	
 see	
 page	
 D	

-­‐	
 17	

object	
 data	
 types	
 Card:	
 see	
 page	
 D	
 -­‐	
 18	

value:	
 see	
 page	
 D	
 -­‐	
 20	

quantity:	
 see	
 page	
 D	
 -­‐	

20	

roll:	
 see	
 page	
 D	
 -­‐	
 20	

functions	

named	
 (multiple	

implementation)	

functions	

roll(int	
 value,	
 int	

playerID):	
 see	
 page	
 D	
 -­‐	

29	

DLanguage
Reference

Manual

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

D - 1

ROLL Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128
Dan Wilkey - dgw2109

1.	
 Introduction.. 3	

2.	
 Syntax .. 3	

a.	
 Line Termination.. 3	

b.	
 Whitespace... 3	

c.	
 Comments .. 4	

3.	
 Primitive Types.. 4	

a.	
 Introduction .. 4	

b.	
 Integers... 4	

c.	
 Text .. 4	

d.	
 Arrays... 5	

e.	
 Casting ... 6	

4.	
 User-Initialized Variables .. 6	

a.	
 Overview.. 6	

b.	
 Local Integer Variables.. 7	

c.	
 Local Integer Arrays .. 7	

d.	
 Global Integer Variables .. 8	

5.	
 Operators & Logic ... 8	

a.	
 Arithmetic Operators.. 8	

b.	
 Logical Comparisons ... 9	

c.	
 Concatenation Operator ... 10	

d.	
 Conditionals ... 10	

e.	
 For-each Loops... 12	

6.	
 How a ROLL program is organized... 13	

7.	
 Block-Level Fields... 14	

a.	
 Introduction .. 14	

b.	
 Scope.. 14	

c.	
 Field List .. 14	

8.	
 Object Data Types.. 17	

a.	
 Introduction .. 17	

b.	
 Object Data Type List.. 18	

9.	
 Attributes of Object Data Types .. 18	

a.	
 Specifying Attributes ... 18	

b.	
 Accessing Attributes .. 18	

c.	
 Attribute List .. 19	

10.	
 Functions.. 22	

a.	
 Introduction .. 22	

b.	
 Functions Already Defined by the ROLL Language (Static Functions) 22	

D - 2

i.	
 Static Function List... 22	

c.	
 Function Templates That Can Be Defined By The Programmer (Dynamic
Functions) ... 25	

i.	
 Single Definition vs. Multiple Definition Functions .. 26	

ii.	
 Function Naming Mechanism.. 26	

iii.	
 Argument Enumeration .. 26	

iv.	
 Dynamic Function List (Single Definition) .. 27	

v.	
 Dynamic Function List (Multiple Definition).. 29	

11.	
 Reserved Words ... 31	

D - 3

1. Introduction

ROLL is an easy-to-use programming language designed to facilitate the
implementation of children’s board games. Aspiring ROLL developers
should have some programming experience with a high-level language like
Java or C#. A creative and unique idea for a game will also come in handy,
though not entirely necessary. Well-implemented games in ROLL contain a
custom game board, multiple players, an element of chance, and choices
available to the players that influence the outcome of the game. A program
written in ROLL could serve as the back-end of a complete game program
that may include a graphical user interface implemented in another
language.

The following Language Reference Manual serves to introduce aspiring
roll programmers both to the syntax of the language and details on how to
most effectively program in ROLL.

2. Syntax
Elements of our language will be formatted according to the
following convention:

Element Name Format Example

Functions Lowercase followed by camel case aMethod

Local Variables Lowercase next

Block-level Fields Uppercase followed by camel case StartOn

User Defined Global
Variables

Dollar sign, $, followed by
uppercase, followed by camel case

$MyGlobal

Object Types Uppercase followed by camel case TileList

Language Keywords Lowercase make

a. Line Termination
All lines are terminated with semicolons (;)
Methods and type definitions are an exception – their start and end
is delimited with curly braces ({}), so they are not followed by
semicolons.

b. Whitespace
Whitespace has no meaning in our language other than to increase
code readability.

D - 4

Example:

Game aGame {
Players {}
Board {}
Dice {} // or Deck {}
}

Is equivalent to:

Game aGame { Players{} Board{} Dice{} }

c. Comments
Comments in the source code are ignored by the compiler and are a
useful tool in writing readable code. Only line commenting is
allowed in ROLL. Line comments begin with two successive
forward slashes and continue through to the end of the current line
(without exception). The following is an example:

int pizza; //this is a comment

3. Primitive Types

a. Introduction
In an effort to minimize the number of data types a ROLL
programmer must be familiar with, ROLL uses a small set of
primitive data types including integers and text.

b. Integers
ROLL accepts any signed integer. They can range in value from
-2,147,483,648 to +2,147,483,647. Positive integers do not need to
be indicated with a (+) sign.

Example:

 183
 -9238484
 9

c. Text
Text is defined as any combination of all printable ASCII characters
placed in between a set of double quotes.

D - 5

Within text, the ASCII character ‘”’ and the sequence of two “//”
are not allowed. These characters are reserved for other constructs
in the ROLL language.

Example:

 "Enter a name:"
 "Adam"

Note that programmer may not define their own text variables.
They can only be used in a call to print() (see functions) or as a
player’s name attribute (see object attributes).

d. Arrays
ROLL uses arrays of various types of objects in the implementation
of a game. TileList, PlayerList, and a player’s
PieceList are, respectively, arrays of tiles on the board, players
in the game, and pieces of the players. The programmer cannot
create new arrays of these three types from scratch.

Arrays of integers are also available in ROLL. Some arrays (like
StartOn) are already specified in the language and need only be
set by the programmer. Arrays fields can be created using the
following syntax:

StartOn = {1, 2, 3, 4};

Here, StartOn is assigned an integer array of length four, storing
values 1, 2, 3, and 4.

Arrays can also be set using an integer variable:

int aValue = 7;
StartOn = {1, 2, 3, aValue};

Alternatively, arrays can be created using the following shorthand
syntax, placing a tilde between the upper and lower bounds of the
array. The array will be filled with all integers between the upper
and lower bounds. Integers, variables, or complex arithmetic
expressions involving both integers and variables can be on both
sides of the tilde for shorthand array declaration. The following
array will be instantiated with all values between its upper and
lower bounds:

StartOn = {1 ~ 4};

D - 6

Here, StartOn also is assigned an integer array of length four
storing values 1, 2, 3, and 4.

Note that in using the special tilde syntax, the upper bound must be
greater than the lower bound. ROLL accepts arrays of integers up
to size 2,000,001.

The user may also define custom arrays. See user-initialized
variables, below.

e. Casting
ROLL does not allow the programmer to deliberately cast one type
to another. Casting only occurs from integers to text when an
integer is concatenated with text. The concatenation operator, |,
will be discussed in a later section.

Example:

print(“It is player” | playerID | “’s
turn.”);

Output:
It is player3’s turn.

The integer playerID is cast to a text representation of its
numerical value.

4. User-Initialized Variables

a. Overview
Programmers using ROLL may instantiate three kinds of variables:
local integers, local integer arrays, and globally visible integer
variables.

Naming Convention
Variable names are case sensitive in ROLL. A variable name can
be any combination of upper or lowercase characters, numerical
digits (0 through 9), and underscore (_) characters. By convention,
the fields of the ROLL language that the programmer may set are
camel case, starting with a capital. Variables that the programmer
defines himself are camel case, starting with a lowercase letter.

Instantiation & Assigning an Initial Value

D - 7

To instantiate a variable the programmer uses the “int” keyword.
To assign a value to a variable a programmer uses the '='
assignment operator.

Example:
 int myInteger = 15;

b. Local Integer Variables
By convention, local integer names begin with a lowercase
character followed by camel case.

The scope of a variable that the programmer defines himself is
limited to the function level, block level, or game level where the
variable is instantiated.

To reassign a value to the local variable, use the '=' assignment
operator.

Example:
 int myInteger = 15;
 myInteger = anotherInteger;

c. Local Integer Arrays
The names of local integer arrays must be preceded by a ‘#’. By
convention, local integer array names begin with a lowercase
character followed by camel case.

The scope of a variable is limited to the function level, block level,
or game level where the array is instantiated.

There are three ways to create an integer array:

int #myArray[size]; //size is the size of the
array
int #myArray = {1, 2, 3, 4}; //in-place array
instantiation
int #myArray = {1 ~ 4);

To reassign a value to an array element, use the '=' assignment
operator.

Examples:

int #myArray[4];

D - 8

int #myArray = {5, 6, 7, 8};
#myArray[2] = 7;

d. Global Integer Variables
Integer variables that are not specified in any of the four main
blocks are part of the Game level. All fields that are declared at this
level can be modified by any of the four main blocks. Global fields
must be declared before any of the blocks are implemented.

They can be useful to games that require integer variables to be
visible in all areas of the game.

The names of global integer variables must be preceded by a ‘$’.
By convention, global integer variable names begin with an
uppercase character followed by camel case.

Examples:

int $MyGlobalVariable = 7000;
$MyGlobalVariable = $MyGlobalVariable + 1000;

Note that only initialization of a global variable is done before the
blocks are implemented. Expressions that use these global
variables, such as in the second line of the example, must appear
within the blocks.

5. Operators & Logic

a. Arithmetic Operators
Arithmetic operations can only be used on integers. They can be
used to assign a value to a new integer or to an existing integer. The
four basic operations are:

Operator Name Description

+ Addition Adds the left operand to the right operand.

- Subtraction Subtracts the right operand from the left
operand
(Also used to indicate a negative number)

* Multiplication Multiplies the left operand by the right
operand.

D - 9

Operator Name Description

/ Division Divides the left operand by the right operand.
(Truncates non-zero decimals in the quotient)

ROLL accepts arithmetic expressions in infix notation. The
standard order of operations is preserved. Expressions are evaluated
from left to right with multiplication and division computed before
addition and subtraction. To eliminate ambiguity when reading
ROLL code, you may surround arithmetic computations by
parentheses.

Precedence
Specification

Name Description

() Parentheses Operations contained within parentheses
will be computed first, regardless of the
order of precedence. Parentheses must
contain a left operand, followed by an
operator, followed by a right operand.

Example:

int x = 0;
int y = 11;
x = y + 2; // x is now equal to 13
y = x / 2; // y is now equal to 6
int z = 100 - x * y; // z is now equal to
22

Example:

The following lines of code are equivalent:
int z = 100 - x * y;
int z = 100 - (x * y);
int z = -(x * y) + 100;

But they are not equivalent to:
int z = (100 - x) * y;

b. Logical Comparisons
Logical comparison operators are used to compare integers by their
value. There are several logical operators in ROLL:

D - 10

Conditional Operator Description

== equals

!= not equals

! not*

< greater than

< less than

>= greater than or equal to

<= less than or equal to

Examples of logical comparisons between integers will be shown in
a later section, in conjunction with the conditional operators that are
used to compute the return values of logical comparisons.

*note that the ! (not) operator can only be used on complete
expressions that are inside parentheses. Expressions must contain an
operator between 2 values.

c. Concatenation Operator
Text fields and integers can be appended to each other using the |
operator.

Operator Name Description

| Concatenation Appends the right operand to the end of the
left operand. The right and left operands can
be any combination of integers, texts, and
variables.

d. Conditionals
These represent blocks of code that will only be computed if a
certain expression evaluates to true. The best way to learn these is
by example.

If Conditionals
Evaluate a given condition. If the condition evaluates to true (non-
zero), it will execute the block of code immediately following the
condition.

D - 11

if (condition) {
 //execute this block of code
}

Else If Conditionals
Evaluate the conditions sequentially. Upon evaluating the first
TRUE condition, it will execute that condition’s proceeding block
of code and discontinue evaluating the following conditions.

if (condition_1) {
 //execute condition_1’s block of code
}
else if (condition_2) {
 //execute condition_2’s block of code
}
else if (condition_3) {
 //execute conditions_3’s block of code
}

Else Conditionals
This is the final case in a group of if and else if statements. If
all the preceding conditions are false, then the else condition is
reached and its following block of code is executed.

if (condition_1) {

//execute condition_1’s block of code
}
else if (condition_2) {
 //execute condition_2’s block of code
}
else if (condition_3) {
 //execute conditions_3’s block of code
}
else {

//execute this block of code if all
// previous conditions were false

}

Examples:

Given the following integers, conditional statements are evaluated
below.
int x = 5;
int y = 12;
int z = 16;

Example 1:

D - 12

if (x < y) {
 // this block will be executed
}

Example 2:

if (y >= 20) {
// this block will be ignored
}
else if (z == x) {
 // this block will be ignored
}
else if (!(x != 5)) {
 // this block will be executed
}
else if (y != z) {
 // this block will be ignored
}

Example 3:

if (z <= y) {
 // this block will be ignored
}
else if (x == y) {
 // this block will be ignored
}
else {
 // this block will be executed
}

e. For-each Loops
These are used to iterate through an array and perform an action on
every value in that array. For-each loops can only iterate through an
array of integers (you may not iterate through the PlayerList,
TileList, or a player’s PieceList). For-each loops may not
add values into or remove values from the array.

Examples:

The following examples print each value in the array. You can use
any of the three types of arrays in a for-each loop. The three
examples below all print the same output:

Output:
the next element is: 5

D - 13

the next element is: 6
the next element is: 7
the next element is: 8
the next element is: 9

1.
for (int i : { 5, 6, 7, 8, 9 }) {
 //print("the next element is: " | i);
}

2.
for (int i : { 5 ~ 9 }) {
 print("the next element is: " | i);
}

3.
int #myArray = {5 ~ 9};
for (int i : #myArray) {
 print("the next element is: " | i);
}

Furthermore, the integer that is the index used for the iteration can
only be instantiated as part of the for-each statement.

Example:

ROLL programmers may write for (int i : {1 ~ 5})
{…}, but they may not write int i = 0; for (i : {1 ~
5}) {…}.

6. How a ROLL program is organized
A program written in ROLL is organized into three major blocks: the
Players block, the Board block, and a choice of either the Dice block
or the Deck block. Each block contains block-level fields, object data
types, and functions that are closely associated with the functioning of that
block. These three statement types must appear in this order in a block
(fields, objects, functions). Descriptions of these are in the following
sections.

The major blocks must be arranged, in the case of a program using the
Dice block, in the order of Players, Board, and then Dice. For
programs that use the Deck block, they should be in the order of
Players, Board, then Deck. Any block can be omitted, in which case
the language default is used for that block.

D - 14

7. Block-Level Fields

a. Introduction
Within ROLL’s main blocks are fields that can be set by the
programmer. With the exception of one called NextTurn, they all
can be set only once. They all may be omitted if the programmer
wishes to use a default value that we provide. This section
enumerates all the programmable block-level fields in ROLL, the
block in which they can be set (parent block), the block(s) in which
they can be accessed, and the values they default to if they are
omitted by the ROLL programmer.

b. Scope
All block-level fields follow the same rule with regard to the textual
regions of the program in which they may be accessed. All block-
level fields may be accessed within dynamic functions that belong
to the same block or a later block. This means that all of the fields
of the Players block are accessible in the Players, Board, and
Dice/Deck blocks. All of the fields of the Board block are
accessible in the Board and Dice/Deck blocks. All of the fields
of the Dice/Deck are accessible only in the Dice/Deck block.

Note that the fields must be set in the order in which they appear
below (although as stated, any can be omitted). Unless otherwise
specified, the field can only be set explicitly by the user and may
not be used in a call to promptList or promptRange (see
functions), which allow the user to set a variable.

c. Field List
Field Parent

Block
Description Default

Value

GUI Players An integer flag, specified in the Players
block, that determines if the output of a program
should be displayed in a GUI (set value to 1) or
to the command line (set value to 0).

0

D - 15

MaxPlayers Players An integer representing the maximum number
of players in the game. Accessible by all
blocks.

6

MinPlayers Players An integer representing the minimum number of
players in the game. Accessible by all blocks.

2

NumPieces Players An integer representing the number of Pieces
that each player will have in the game.
Accessible by all blocks.

1

StartOn Players An integer array that indicates the starting tile’s
ID of each players’ pieces. Accessible by all
blocks.

If the programmer specifies a StartOn array
that has fewer values than there are players, then
for the players with an ID number greater than
the number of specified values, their pieces will
start by default on the 0th tile.

{0, 0, 0, 0, 0, 0}

FinishOn Players An array that indicates the victory condition tile
ID of each player’s pieces. Accessible by all
blocks. This field can be set by prompting the
user (see promptRange and promptList
functions)

If the programmer specifies a FinishOn array
that has fewer values than there are players, then
for the players with an ID number greater than
the number of specified values, their pieces will
have a FinishOn value of 9.

{9, 9, 9, 9, 9, 9}

NumPlayers Players An integer representing the number of players
that will play the game. This field can be set by
prompting the user (see promptRange and
promptList functions)

2

D - 16

PlayerList Players An array of all the Players. Accessible by all
blocks. You can access an individual player
object (discussed later) by providing an integer
in square brackets after PlayerList. Eg:
PlayerList[3] will return the player whose
ID is 3. Note that this cannot be explicitly set
to any values; it is automatically generated
behind the scenes.

N.A.

NumTiles Board The number of Tiles on the Board. Accessible
by the Board and Dice/Deck blocks.

10

TileList Board An array of all the tiles. Accessible by the
Board and Dice/Deck blocks. You can access an
individual tile object (discussed later) by
providing an integer in square brackets after
TileList. Eg: TileList[10] will return
the tile whose ID is 10.

 Note that this is not set to any values the way
the previous fields are. Each tile is created
using the special “make” command (see
section 9a)

N.A.

HasReplacement Deck An integer value that indicates whether a deck
has replacement or not. More specifically: set to
0 if cards have an equal probability of being
drawn on every roll and set to 1 if all cards in
the deck must be selected before any repeats
may occur. Once all cards have been drawn in
the second scenario, the deck is randomized or
‘shuffled’ to ensure a new ordering the next
time through. This field is accessible only by
the Deck block.

0

D - 17

NextTurn Dice/Deck An integer that the programmer can set to force
the game to give the next turn to a specific
player. Usually written as part of a roll()
function definition.

This field is accessible by just the Dice/Deck
block.

Note that unlike the previous block-level fields,
NextTurn can be set to a value more than
once.

This field can be set by prompting the user (see
promptRange and promptList functions)

Normally, the
ID of the player
who goes next
is one plus the
ID of the player
who is currently
going (until you
get to the player
with ID
NumPlayers
– 1; then the
next player is he
who has ID 0).

8. Object Data Types

a. Introduction
The ROLL language has five object data types: Tile, Die, Card,
Player, and Piece. The first four of these are each associated
with one of the four main blocks. Piece is associated with a
Player object data type. With the exception of Player and
Piece, these data types can be instantiated by the user using the
make command with the following syntax:

make Object(attribute1:value1,
attribute2:value2);

For example, a Card might be created by typing the following:

make Card(value:6, quantity:4);

Each object data type has associated attributes, which is discussed
in the following section.

D - 18

b. Object Data Type List

Object Data
Type

Parent Attributes Example Instantiation

Player Players
Block

PieceList, Name,
occupiedTileID

Players (and their pieces) in ROLL are instantiated
automatically and cannot be created explicitly.

Tile Board
Block

ID, next, prev,
accessible,
landsOn

make Tile(id:4, next:5, prev:3,
accessible:{1, 7},
landsOn:jumpToStart);

Die Dice
Block

faces make Die(faces:6);

Card Deck
Block

value, quantity make Card(value:4, quantity:6,
roll:splitRoll);

Piece Player
Object

occupiedTileID Pieces in ROLL are instantiated automatically and
cannot be created explicitly.

9. Attributes of Object Data Types

a. Specifying Attributes
Each object data type has the attributes listed in the table above. A list of
these attributes in more detail appears in the table that follows. For the
object data types that are created using the make command (Tile, Die,
and Card) the attributes must be set in the order in which they appear in
the following table. For example, when creating a Tile, you can write

make Tile(id:4, next:5, prev:3);

but you cannot write

make Tile(next:5, id:4, prev:3);

Some of these attributes may be omitted when using the make command;
this is specified in the “can omit?” column.

For the Player object data type, which does not use the make command,
the only attribute that can be set by the programmer is name. This must be
set using the promptName function, which is discussed later.

No attributes of the Piece object data type may be set by the programmer.

b. Accessing Attributes
Many of these attributes serve a purpose in and of themselves (eg: the
number of faces on the die determines the amount rolled on each turn), but

D - 19

other attributes only make sense if they can be accessed by the programmer
(eg: the accessible array of a Tile). It is possible in ROLL to access
some of the attributes of Player data types, Tile data types, and Piece
data types. However, none of the attributes of the Die and Card data
types may be accessed.

To access the attributes of an object data type, you must be able to access
the object data type itself; you can then refer to its attribute by appending
.attributeName to its end. Thus, to access the attributes of a
Player or a Tile, you must be able to access a Player data type itself
and a Tile data type itself. These can be accessed from the
PlayerList field of the Players block and from the TileList field
of the Board block, which are arrays of Player objects and Tile
objects, respectively. To specify an individual object, place the ID of that
object in square brackets after the list name.

For example, PlayerList[3] returns the player object whose ID is 3,
and PlayerList[3].name returns his name attribute.

To access an attribute of a Piece, you must first obtain the PieceList of
a player. Since the PieceList is actually an attribute of a Player
object data type, you can refer to the PieceList by writing
PlayerList[playerID].PieceList, and to a piece’s attribute as:
PlayerList[playerID].PieceList[pieceID].attributeN
ame.

Since no attributes of the Die or Card data type can be accessed, you
cannot access a Die or Card data type (and hence, there is no such thing
as a DieList or a CardList).

Here is a list of object attributes and their associated properties. The “can
be accessed” column specifies whether the attribute is accessible by the
programmer.

c. Attribute List

Attribute Parent
Object
Data
Type

Description Can
omit?

Default
value if it
can be
omitted

Can be
accessed?

D - 20

name Player A text field of the Player that indicates
the player’s name.

N.A. (a
Player
is not
created
using
make
command)

N.A. Yes

PieceList Player An array of the pieces that a given
Player has. You can get an individual
piece by providing an integer in
square brackets after PieceList.

Eg:
PlayerList[4].PieceList[2]
will return the third piece object (ID 2)
of the player data type whose ID is 4.

N.A. (a
Player
is not
created
using
make
command)

N.A. Yes

occupiedTileID Piece A field of a piece inside the
PieceList of a Player. This local
variable can be accessed in the
following manner:

PlayerList[int_type]
.PieceList[int_type]
.occupiedTileID

N.A. (a
Piece is
not
created
using
make
command)

N.A. Yes

id Tile A local field of Tile. The ID number
of a given tile. These are successive
integers from zero to the number of
tiles - 1.

No N.A. No

next Tile A local field of Tile. The ID number
of the next tile that a Piece will move
forward to when traversing the tiles
sequentially in a move() call
(function calls are discussed later).

No N.A. Yes

D - 21

prev Tile A local field of Tile. The ID number
of the previous tile that a piece will
move backwards to when traversing
the Tiles sequentially in a call to
moveReverse().

No N.A. Yes

accessible Tile A local field of Tile. An array of IDs
of Tiles that a Piece can move to from
a given Tile.

Yes An empty
array

Yes

landsOn Tile A local field of Tile. A field within
tile that indicates which landsOn()
function to call when a Piece lands on
that Tile.

Yes The
default
landsOn
function

No

faces Die An integer field within Die that
specifies how many faces are on the
given Die. When a player rolls the die,
it can roll any value from 1 to the
number of faces specified in this
value.

No N.A. No

value Card A local field of Card. The number on
the Card and the default number of
tiles a piece will move forward when a
Player draws that Card.

No N.A. No

quantity Card A local field of Card. Indicates the
number of one type of a Card found in
the Deck.

No N.A. No

roll Card A local field of Card. A field within
Card that indicates which roll()
function to call when that Card is
drawn. The roll() function then
executes the player’s turn.

Yes The
default
roll()
function

No

D - 22

10. Functions

a. Introduction
Functions are the methods in ROLL. They are groupings of
instructions that are common to many board games. Functions can
have a name and a set of arguments that are passed into the
function.

b. Functions Already Defined by the ROLL Language
(Static Functions)

Many functions in ROLL are already defined and only need to be
called. We call these static functions. They are called simply by
passing the necessary function arguments to the function.
These functions are promptText(), promptList(),
promptRange(), print(),declareWinner(), move(),
moveReverse(), and jump(). Note that the programmer is not
allowed to define these functions himself.

i. Static Function List

print(text	
 textToPrint)	

Called in:
Can be called anywhere in the program.
Arguments:
text textToPrint — the text that will be printed to the
console.
Action:
The program prints out the text passed in through the function
argument.

promptName(text	
 nameToBeChanged)	

Called in:
Can be called anywhere in the program, but is usually found as a
function call in the setupPlayers()functions.
Arguments:
text nameToBeChanged — the text variable that a player’s
name attribute will be set to.
Action:
The program waits for the next line entered by the player,
terminated by a carriage return, and stores the entered text in the
name field passed in by the programmer.

D - 23

promptList(int	
 intToBeChanged,	
 int[]	
 options)	

Called in:
Can be called anywhere in the program, but is usually found as a
function call in the setupPlayers() and roll() functions.
Arguments:
int intToBeChanged — the int variable that will store the
user’s selection
int[] options — the array of integers that are valid options.
Action:
The program prints out the list of integers enumerated in options.
The program then waits for the next line entered by the player,
terminated by a carriage return, and determines if the entry is an
integer in the list of allowed integers. If it is, the program stores the
integer in the variable passed in by the programmer
(intToBeChanged). Otherwise, the program waits until a valid
integer is entered.

	

promptRange(int	
 intToBeChanged,	
 int	
 lowerBound,	
 int	

upperBound)	

Called in:
Can be called anywhere in the program, but is usually found as a
function call in the setupPlayers() and roll() functions.
Arguments:
int intToBeChanged — the int variable that will store the
user’s selection
int lowerBound — the lower bound for valid inputs
int upperBound — the upper bound for valid inputs
Action:
The program prints out the range of valid integers. The program
then waits for the next line entered by the player, terminated by a
carriage return, and determines if the entry is an integer in the range
of allowed integers. If it is, the program stores the integer in the
variable passed in by the programmer. Otherwise, the program
waits until a valid integer is entered.

	

declareWinner(int	
 playerID)	

Called in:
Can be called anywhere in the program, but is usually found as a
function call in the goalCheck() function in the Board block.

D - 24

Arguments:
int playerID — the ID of the player that will be declared the
winner of the game.
Action:
The program will print to the console that the specified player won
the game and the game terminates.

declareWinner()	

Called in:
Can be called anywhere in the program, but is usually found as a
function call in the goalCheck() function in the Board block.
Arguments:
<none>
Action:
The game terminates. Notice that the declareWinner()
function is overloaded. The version with a playerID argument
declares a winner, while this version with no arguments declares no
winner.

move(int	
 playerID,	
 int	
 pieceID,	
 int	
 distance)	

Called in:
Can be called in the roll() functions of the Dice or the Deck
blocks or from the landsOn() function of the Board block.
Arguments:
int playerID — the ID of the player whose piece is to be
moved.
int pieceID — the ID of the piece to be moved.
int distance — the number of squares the piece will be moved
forward.

Action:
When the move() function is called, the current player’s piece
(specified by playerID and pieceID in the argument list)
arguments moved forward by the distance specified in the
argument.

moveReverse(int	
 playerID,	
 int	
 pieceID,	
 int	
 distance)	

Called in:
Can be called in the roll() functions of the Dice or the Deck
blocks or the landsOn() function of the Board block.
Arguments:

D - 25

int playerID — the ID of the player whose piece is to be
moved.
int pieceID — the ID of the piece to be moved.
int distance — the number of squares the piece will be moved
backward.
Action:
When the moveReverse() function is called, the current player’s
piece (specified by playerID and pieceID in the argument list)
arguments moved backward by the distance specified in the
argument.

jump(int	
 playerID,	
 int	
 pieceID,	
 int	
 tileID)	

Called in:
Can be called from the roll() functions of the Dice and the
Deck blocks. Can also be called from the landsOn() function of
Tiles in the Board block.
Arguments:
int playerID — the ID of the player whose piece is to be
moved.
int pieceID — the ID of the piece to be moved.
int tileID — the ID of the destination tile the piece will be
moved to.
Action:
When the jump() function is called, the current player’s piece
(specified by playerID and pieceID in the argument list)
argument is moved directly to the tile with tileID specified in the
argument.

c. Function Templates That Can Be Defined By The
Programmer (Dynamic Functions)

ROLL also has a number of function templates that can be defined
with code that lays out what happens when the function is called.
We call these dynamic functions. These are
setupPlayers(),preRoll(), goalCheck(), landsOn(),
and roll(). The programmer cannot call these functions at any
point in his/her code. These functions are called automatically at
specific times during the flow of a game.

The arguments that these functions take are unchangeable. Thus,
when implementing one of these functions, the programmer must
write the function signature exactly as it appears in the LRM below.
For example, when defining the roll() method, the programmer

D - 26

must write define roll(int amountRolled, int
playerID) exactly as is, and then may place his/her desired code
afterwards, within braces.

Also note that the programmer does not have to define all of these
functions. Any unimplemented function will be replaced with the
language’s default definition of that function.

i. Single Definition vs. Multiple Definition Functions
Some dynamic functions, namely setupPlayers(),
preRoll(), and goalCheck(), make sense only when there is
a unique definition of how the function is carried out, so these
functions can only have one definition in the program.
Two other dynamic functions, landsOn() and roll(), can have
more than one definition. This allows these functions to have more
than one way to carry out its purpose. For example, it would make
sense for a program to have more than one landsOn() function to
allow different tiles to have different reactions when a piece lands
on that tile. The programmer would then write two separate
definitions of the landsOn() function.

ii. Function Naming Mechanism
When the programmer provides more than one definition of a
function, each definition must be given a different name. The
syntax for naming a function starts with the word function,
followed by the name. The programmer then states which general
function template he is implementing by typing = define and
then the name of the function template. For example, here the
programmer creates a new function named directionRoll,
which is based off of the roll() function template:

function directionRoll = define roll(int
amountRolled, int playerID) {
 //Function implementation goes here
}

*Note that new roll() or landsOn() functions may not be
named default, as it is a reserved word in ROLL and will cause
errors.

iii. Argument Enumeration
The argument list of a function template enumerates the variables
that are available to the programmer when he writes the function

D - 27

definition. For example, the roll(int amountRolled, int
playerID) function template provides for the two function
variables amountRolled and playerID, whose values are the
amount that was rolled on the dice, and the ID of the player whose
turn it is. These two variables exist only in the definition of the
roll() function. Note that the programmer cannot change these
arguments. Each function has a specified argument list that the
programmer cannot change; the reason for including them in the
function definition is so the programmer knows what variables he is
allowed to refer to. Variables the programmer would like to refer to
that are not in the argument list would have to be either block-level
fields in scope (such as NumPlayers and NumPieces), or global
or local variables he has defined himself.

Return Types:
The functions in the ROLL language do not have return types. The
promptName(), promptList(), and promptRange()
functions ask for a variable integer or text as one of their arguments
to store the value entered by the user.

iv. Dynamic Function List (Single Definition)

setupPlayers()	

Defined in:
Players block
Time called:
This is a function not explicitly called by the programmer. It is
called automatically once at the beginning of the game when the
board is set up.
Arguments:
<none>
Action:
This function is called at the beginning of the game after the board
is set up. This function assists with determining the run time
variables such as the number of players and the names of the
players. All the code that is necessary to determine the properties of
players should be inside this function. The programmer cannot
name this function.
Default action if no function is written:
Determines the number of players and their names

preRoll(int	
 playerID)	

Defined in:

D - 28

Board block
Time called:
This is a function not explicitly called by the programmer. It is
called automatically multiple times over the course of the game,
once before a player’s turn begins.
Arguments:
int playerID — the ID of the player whose turn is about to
begin
Action:
This function is called once every time a player is about to begin a
turn. The programmer should include in this function’s definition
all the code that should be executed when a player turn begins.
Usually this includes printing to the screen a message indicating
whose turn it is. The programmer cannot name this function.
Default action if no function is written:
Prints whose turn it is

goalCheck(int	
 playerID,	
 int	
 tileID)	

Defined in:
Board block
Time called:
This is a function not explicitly called by the programmer. It is
called automatically multiple times over the course of the game,
once after each player’s turn ends.
Arguments:
int playerID — the ID of the player whose turn just ended
int tileID — the ID of the tile onto which the player just moved
a piece
Action:
This function is called once every time a player ends a turn. The
programmer should include in this function’s definition all the code
necessary to determine if a player has won the game. The
programmer cannot name this function.
Default action if no function is written:
Checks if the piece that was just moved has reached the tile with ID
NumTiles - 1

roll(int	
 amountRolled,	
 int	
 playerID)	

Defined in:
The Dice block
Time called:
The roll() function is called each time the dice are rolled.
Arguments:

D - 29

int amountRolled — The value of the card that was selected.
int playerID — The player who drew a card.
Action:
The code in the definition of the roll() function carries out the
actions that take place during a player turn.
Default action if no function is written:
Moves the player’s piece with ID 0 forward the number that was
rolled on the dice.

v. Dynamic Function List (Multiple Definition)

landsOn(int	
 playerID,	
 int	
 pieceID,	
 int	
 tileID)	

Defined in:
Board block
Time called:
This is a function not explicitly called by the programmer. Each
Tile data type is linked to a named definition of the landsOn
function. The landsOn function is called automatically when a
piece lands on the tile via the move(), moveReverse(), or
jump() function.
Arguments:
int playerID — the owner of the piece that just landed on the
tile
int pieceID — the piece that just landed on the tile
int tileID — the tile onto which a piece just landed
Action:
This function is called once automatically every time a piece moves
onto a tile. The programmer can write multiple definitions for this
function template and provide each definition a different name. The
landsOn function is linked to a Tile data type by specifying the
named definition of the function template in the make Tile
command.
Default action if no function is written:
Prints a message saying that the piece landed on that tile

roll(int	
 amountRolled,	
 int	
 playerID)	

Defined in:
The Deck block
Time called:
This is a function not explicitly called by the programmer. Each
Card data type in the Deck block is linked to a definition of the
roll() function template. The roll() function is called each
time a card is drawn from the deck.

D - 30

Arguments:
int amountRolled — The value of the card that was selected.
int playerID — The player who’s turn it is.
Action:
The code in the definition of the roll() function carries out the
actions that take place during a player turn.
Default action if no function is written:
Moves the player’s piece with ID 0 forward by the value of the card
that was drawn

D - 31

11. Reserved Words
ROLL contains several words that are unique to the language. Using these
words out of their context (i.e. as a user-defined variable) will result in a
compile-time error. These words include the block names, block-level
fields, and object data types seen throughout the LRM. In addition, since
ROLL source code is translated into Java code, all Java reserved words are
reserved in ROLL as well. The following is the list of ROLL reserved
words:

abstract	
 faces	
 move	
 protected	

accessible	
 final	
 moveReverse	
 public	

assert	
 finally	
 name	
 quantity	

Board	
 FinishOn	
 native	
 return	

Boolean	
 FinishOn	
 new	
 roll	

break	
 float	
 next	
 short	

byte	
 for	
 NextTurn	
 StartOn	

Card	
 function	
 NumPieces	
 static	

case	
 Game	
 NumPlayers	
 strictfp	

catch	
 goto	
 NumTiles	
 super	

char	
 GUI	
 NumTiles	
 switch	

class	
 HasReplacement	
 occupiedTileId	
 synchronized	

const	
 id	
 occupierID	
 this	

continue	
 if	
 package	
 throw	

Deck	
 implements	
 Piece	
 throws	

declareWinner	
 import	
 PieceList	
 Tile	

default	
 instanceof	
 Player	
 TileList	

define	
 int	
 PlayerList	
 transient	

Dice	
 interface	
 Players	
 try	

Die	
 jump	
 prev	
 value	

do	
 landsOn	
 print	
 void	

double	
 long	
 private	
 volatile	

else	
 make	
 promptList	
 while	

enum	
 MaxPlayers	
 promptName	
 	

extends	
 MinPlayers	
 promptRange	
 	

	

EProject Plan
Lauren Pully,

Project Manager

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

E - 1

Project Plan

Lauren Pully
Project Manager

Process
We used an incremental development approach when creating the ROLL translator – we
broke the project into small milestones and made sure that we tracked the progress every
step of the way.

We met the first weekend of the semester to brainstorm language ideas. After two long
brainstorming sessions we finally settled on ROLL, a language for creating and playing
board games. We used weekly status meetings as a chance to update each other on the
tasks completed throughout the previous week. We would then spend time determining
our next steps and finally iron out a schedule for tasks to be completed during the
following week.

Responsibilities
Our official team roles are divided as:

Lauren Pully (Project Manager)
Jesse Bentert (Tools & Language Guru)
John Graham (System Architect)
Daniel Wilkey (System Integrator)
Yipeng Huang (Tester & Validator)

In reality, however, definitive team rolls blended together as our team collaborated on
several parts of the project, despite our various distinct roles. After writing our
whitepaper together we split into two groups. Jesse, John, and Lauren started to design
the Java backend while Dan and Yipeng started outlining ROLL programs. Once we had
a basic outline of both a ROLL program and the Java backend, we took a break from
code design to write our Language Reference Manual and Tutorial. After completion, we
resumed code design with new team roles. Jesse and Dan worked on the grammar and
parser while John coded sample ROLL programs. Lauren worked on the GUI. Yipeng
authored and ran the entire testing suite.

Implementation Style Sheet
We formatted our code using a basic style sheet similar to that of Eclipse. To a Java
programmer, this should appear familiar. A screen shot of sample ROLL code is included
below:

Game SampleProgram {
 int $randomVar = 1;
 Players {
 GUI = 1;
 StartOn = {0,5,2};

E - 2

 FinishOn = {9,9,9};

 define setupPlayers(){
 print(StartOn[2]);
 }
 }

 Board{
 NumTiles = 10;
 ...

Timeline
The following timeline includes our team’s project meetings and weekly milestones:

Date Milestone
1/21 Formed Team
1/31 First Team Meeting, Discussed Possibilities for a Language
2/7 Finalized idea for Language, Began discussing “Buzz Words”
2/13 Wrote whitepaper as a team
2/21 Finished whitepaper, split up back-end and ROLL code responsibilities
2/24 Whitepaper due
2/27 Discussed ROLL language ideas, basic ROLL programs, and backend design
3/6 Divided up responsibilities for Language Reference Manual and Tutorial
3/19 Compiled first draft of documentations
3/20 Met to discuss documentations
3/22 Finished documentations
3/28 Split up responsibilities for finishing compiler
4/3 Discussed progress on compiler roles
4/7 Rough draft of grammar complete, started parsing
4/10 Discussed grammar and parsing changes, divided up responsibilities to

complete the Java backend, discussed presentation
4/18 Discussed error handling, parsing progress, and backend progress, rehearsed

presentation
4/21 Discussed parsing and GUI progress, rehearsed presentation
4/23 Rehearsed presentation
4/24 Rehearsed presentation
4/25 Rehearsed presentation
4/26 Presentation in Class
5/3 Created a final to do list for our project and distributed the work left to be done
5/7 Finished documentation

Project Log
The following project log divides our group’s major milestones into individual timelines.

Whitepaper
The whitepaper gave our team an opportunity to really get to know one another while

E - 3

brainstorming our ideas for the semester. We spent our first meeting throwing out ideas
and narrowed it down to a couple of choices by the end of two hours. The next week we
agreed on a language idea and started to talk about features that we wanted it to have.
We spent the next couple of weeks solidifying these ideas and completing our
whitepaper.

Date Milestone
1/21 Formed Team
1/31 First Team Meeting, Discussed Possibilities for a Language
2/7 Finalized idea for Language, Began discussing “Buzz Words”
2/13 Wrote whitepaper as a team
2/21 Finished whitepaper
2/24 Whitepaper due

Language Syntax Design
One of our first milestones was to design the ROLL syntax. We tried to keep in mind
that ROLL was designed to be simple, and that it should be easy to understand from our
whitepaper. We started by writing both sample constructs and basic programs.
Date Milestone
2/21 Started talking about ROLL syntax
2/24 Whitepaper due
2/27 Discussed ROLL language ideas and basic ROLL programs
3/6 Wrote short ROLL programs
5/7 Wrote more complex ROLL programs for our testing suite

Java Backend Design
As we designed the ROLL code we discussed features that our Java backend would need
to include. We started working on the basic versions of our Java backend to support
these features. As we continued to add features to our ROLL language we added
corresponding support in our backend. We also decided to add a GUI.
Date Milestone
2/21 Started discussing Java backend
2/27 Discussed sample programs in backend
3/6 Finished basic Java, command line backend
4/18 Updated Java backend to support new ROLL features, began working on GUI
4/21 Discussed GUI progress
5/3 Generalized GUI Complete
5/7 Customized GUI complete

Language Reference Manual / Language Tutorial
Writing the language reference manual provided our team an opportunity to put all our
concrete ideas onto paper.
Date Milestone

E - 4

3/6 Divided up responsibilities for Language Reference Manual and Tutorial
3/19 Compiled first draft of documentations
3/20 Met to discuss documentations
3/22 Finished documentations
5/7 Finished documentation

Grammar and Parsing
After writing some sample ROLL programs for our documentation, we had a good idea
of what the grammar should look like. We started writing out parts of the grammar and
then began transferring those into Lex and Yacc for parsing.
Date Milestone
3/28 Started writing grammar and parsing it
4/3 Discussed progress on compiler roles
4/7 Rough draft of grammar complete, started parsing and testing
4/10 Discussed grammar and parsing changes
4/18 Discussed error handling and parsing progress
4/21 Discussed parsing progress
5/7 Updated grammar to reflect parsing errors found in testing

Presentation
The class presentation gave our team a chance to step back from coding our compiler and
present our accomplishments from the semester.
Date Milestone
4/10 Discussed grammar and parsing changes, divided up responsibilities to

complete the Java backend, discussed presentation
4/18 Discussed error handling, parsing progress, and backend progress, rehearsed

presentation
4/21 Discussed parsing and GUI progress, rehearsed presentation
4/23 Rehearsed presentation
4/24 Rehearsed presentation
4/25 Rehearsed presentation
4/26 Presentation in Class
5/3 Created a final to do list for our project and distributed the work left to be done
5/7 Finished documentation

Final Report
The final report was an opportunity to revise and compile all of the documentation we
had created throughout the semester.
Date Milestone
2/24 Whitepaper due
3/22 Language Reference Manual and Tutorial Due
5/7 Finished final report

FLanguage
Evolution

Jesse Bentert,
Tools & Language Guru

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

F - 1

Language Evolution

Jesse Bentert
System Architect

Our motive for ROLL was to design a syntax that was emblematic of the constructs

found in an actual board game. We figured that this would make programming in ROLL simpler

and more intuitive. We realized that there are three items common to all board games: the board,

the dice, and the players. We thus decided to create one section of code, dubbed blocks, for each

of these. In accordance with this initial decision, we tried to incorporate every subsequent

language construct into one of the three abstractions to maintain a clear divide between the

component blocks.

In addition, we concluded that there are many actions common to all board games, like

moving a piece or rolling a die. We realized that we could code these generic constructs

ourselves and shield them from the ROLL programmer. In this way, a programmer who writes

in our language would only have to focus on the features specific to his own game and would not

have to write code for those things common to all board games. Thus, every line of code that a

ROLL programmer writes is specific to their game.

To make it easy for the programmer to code these specifics, we decided to give each

block an associated set of attributes that the programmer can vary. We came up with three

different forms for these attributes: fields that could be set, objects that could be created, and

functions that the programmer could define.

 Fields are the board game constructs that vary from game to game whose values can be

specified by the programmer. For example, we created a variable NumTiles whose value can be

F - 2

set in the board block by including NumTiles = <someNumber>;, where <someNumber> can be

any positive integer. The fields related to a board are set in the board block; likewise, the fields

related to players are set in the players block.

 Instantiating objects allows gives the programmer more functionality than setting fields.

For example, although setting the number of tiles on the board is as easy as giving NumTiles a

value, we also allow the programmer to give each tile a specific behavior. We made this

possible by allowing the programmer to explicitly create each tile object, specifying the

attributes that he wanted each one to have. For example, to create a tile, you could write “make

Tile(id: 3, next: 4, prev: 2).”

W realized that programmers might want to give their board games behavior that they

could not specify by only setting fields and creating objects. We thus created a set of functions

for each block that the programmer would define himself. These functions are automatically

called at appropriate times throughout the course of the game, meaning the programmer only has

to specify their desired action and with which tile they’re associated. For example, the preRoll()

function allows the programmer to specify the action carried out before each player’s turn.

One challenge in developing ROLL was ensuring that, for each new construct we added,

we maintained the features we agreed upon in our original language proposal. We periodically

evaluated our language against that proposal. One of our main goals was that the programmer

need not provide the code common to all games. But after adding functions to our language, we

realized that this was not the case. For example, ROLL programmers can write a setupPlayers()

function that retrieves information about the players in the game. Most board game creators are

probably going to do the same thing in this function: determine how many players there are and

get their names as input. We did not want to get rid of this function entirely in case the

F - 3

programmer did want to implement some custom behavior, but we did not want to force them to

write it, since this behavior is so common. Thus we developed the concept of defaulting. The

programmer can omit any function that he wants, in which case it is replaced with a default that

we provide. If the programmer is satisfied with just asking for the number of players and their

names, he can leave out the setupPlayers() function. If, instead, he wants to do something more

complex, like give each player some money to start, then he can write the setupPlayers() method

to do so.

We then realized we could extend this idea to fields and blocks. Programmers can omit

most of the block fields, or even entire blocks. Doing so allows them to use our default

implementation for that field or block, thus granting programmers the opportunity to customize

their game while leaving out any code common to all games

In order for all team members to be informed of language changes as we developed

ROLL, we had to be in constant communication. Our main method of communication was

email. Anytime a new syntactic construct was created, an email was sent to all team members.

However, email cannot replace in person meetings; therefore, we had biweekly meetings in

which we discussed any changes that had been made since the last meeting. It was sometimes

difficult for everyone to be up to speed with our evolving syntax, but being in constant contact

enabled us to resolve any conflicts.

GTranslator
Architecture

John Graham,
System Architect

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

G - 1

Translator Architecture

John Graham
System Architect
	

 ROLL compilation begins with our compilation script, rollc. Using the command

rollc <game-name>, a ROLL source file is translated to executable code. Although this is

all the application programmer will see for an errorless program, there is a great deal going on

behind the scenes between these two states of the specified board game.

 Our lexical analyzing is done using Flex and both our syntactical and semantic analysis

are handled by Yacc. Both Flex and Yacc compile to C source code and can be subsequently

compiled and linked together using gcc. We refer to this generated file simply as the ROLL

compiler. Passing ROLL source code to this compiler comprises the first step of our translation

architecture. In practice though, the ROLL compiler may be generated before compilation of a

ROLL source program begins.

 The translation of ROLL source code actually begins when this code reaches our lexical

analyzer, roll.l. This Flex file uses a series of regular expressions to recognize valid tokens

from the source code and generate a token stream. Any unrecognized characters are echoed back

to the standard out to indicate that they are invalid tokens, though compilation proceeds as

normal. It is possible for an error to be thrown at this stage if a string from the source file with

valid characters cannot be mapped to a token. In all other events, the token stream generated by

the lexical analyzer is given as input to our syntax analyzer, roll.y.

 The goal of the ROLL syntax analyzer is to use a syntax directed translation scheme to

convert ROLL source code to syntactically correct and semantically equivalent Java source code.

G - 2

We use purely bottom-up parsing productions to turn roll syntax into four Java classes, which

integrate with our backend framework. Our translation is achieved through a series of helper

functions that perform simple C string manipulation. For each parsing action, the specifics of the

current production are concatenated with the synthesized attributes of the production’s children

(either may be the empty string). Because we do not inspect the attributes of a production’s

parents or siblings, no top-down parsing is needed (though Yacc does provide this capability).

The majority of type and syntax errors are caught at this point in compilation and thrown back to

the programmer. Once the Java files have been generated and output from the ROLL compiler,

control is passed to the Java compiler for the next stage of translation.

 The four output Java files (GlobalVariables.java, PlayersImplementation.java,

BoardImplementation.java, and DiceImplementation.java) created for each ROLL source

program are compiled together with their backend counterparts using javac to yield an

intermediate representation of the board game (i.e. a set of Java class files). It is possible at this

stage to receive Java errors for such things as undefined variables. Two of the more attractive

features of using Java for out backend are its robust error checking and the portability of its

generated class files. After this stage of compilation, the working board game may be ported to

any machine that has the JVM installed.

 Finally, we include a second script with our language entitled roll that executes the Java

code. Using Java’s just-in-time compiler, the board game is finally converted to machine

language at runtime and the game can be played. As a very last line of defense, runtime errors

may be thrown for problems such as use of null values or array indices out of bounds, which may

slip by both compilers. As you can see, the ‘compilation’ of a ROLL program actually involves

G - 3

several sub-compilations before the end user may finally play a game like Sorry or Chutes and

Ladders.

HDevelopment
Environment

Daniel Wilkey,
System Integrator

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

H - 1

Development Environment

Daniel Wilkey
System Integrator

 Development of ROLL can be broken down into two stages. In the first stage, our

primary goal was to create the outline of a Java backend framework. Our initial concept for the

translator was to define syntax for specifying board game rules and compile those rules into Java

files. These Java files would integrate with our backend framework to construct a complete,

working program. During this phase, we developed using the Eclipse IDE because of its

exceptional Java support. In order to facilitate version control, we chose to use the Eclipse

Subversion plug-in, Subclipse. Finally, we integrated Subclipse with GoogleCode, where our

files were actually stored and managed. This environment worked well for the initial phase

because we did not have to think twice about editing any file at any time. If conflicts arose, they

could be merged painlessly using the Subclipse GUI. This enabled us to rapidly develop our

initial backend using Eclipse.

 The issues with Eclipse began to arise when we transitioned to working on the compiler

front end. Our choices of lexical analyzer, Flex, and syntax analyzer, Bison Yacc, do not

integrate well with the Eclipse IDE. These languages use C for all helper functions, which,

given the diversity of platforms on which we were developing, proved difficult to integrate with

Eclipse. For example, Mac and Linux machines come with built-in C compilers, but when

developing on Windows, both third party software and careful integration are required to handle

C files. Due to these complications of working with others, we decided to move all front-end

development to the local platform. The negative ramifications of this decision were the

H - 2

newfound need for manual version control and file management. The upside, however, was that

our entire front end could be compiled and executed using a single Makefile. Each team member

used either a Linux environment (Mac or Ubuntu) or remoted to one (such as a Clic machine) in

order to work on the files. Using Linux: C, Java, Flex, and Yacc compilers can all be seamlessly

installed into the same path. Using the Makefile command, make test<N> (where N is

replaced with the number of the test), we were able to build the lexer, the parser, link the two

into a single C executable, run the compiler with the specified test file, and generate the Java

backend.

Though this strategy worked exceptionally well, we still faced one more glaring problem.

Now that our frontend and backend were being developed in different environments, testing the

entire translator (once we reached the point of merging the two ends) was not easy. This

required manually copying all of the latest Java files from the Eclipse source folder into the

frontend workspace before testing. Eventually the choice was made to abandon Eclipse entirely,

which begs the question of how we handled version control.

Version control for our project was handled delicately. We decided to use Dropbox,

which is simple freeware designed for general-purpose file sharing. This made it easy to import

the latest files to each of our machines on command; however it offered no assistance for

merging conflicted files. We implemented two major process solutions to avoid conflicts. First,

we partitioned the work. Each group member (or pair of two) was assigned a subset of the files

and modules on which to work. In theory, this would avoid all possibility of conflicts.

However, we were not naïve enough to believe that the work one group was doing would never

spill over into that of another group. Our policy for working on files outside of your assigned

subset was to contact whoever was in charge of those files. Once you have ensured said person

H - 3

does not have any uncommitted changes, you are allowed to edit the files yourself and notify the

affected parties immediately after committing your updates. Given the complexity of this

system, we astounded even ourselves with the pace at which we were able to develop the

translator.

Inevitably, there were a few major conflicts and messy merges, but all in all,

development progressed smoothly. A huge advantage of not using version control software is

avoiding the overhead that goes along with it. Checking out, editing, testing, and committing

changes could all be done very quickly using our self-made system. When development of our

translator was nearly completed, we addressed the problem of what sort of compiler tools to ship

to the user.

 Instead of requiring the programmer to use our messy testing Makefile in the finished

product, we instead wrote a very simple shell script, which compiles the ROLL source code

(both frontend and backend) and generates an executable. A second script runs the compiled

game. Partitioning the compilation strategies between a Makefile and scripts offers the end

programmer a choice. They have the option to use our development Makefile, which allows for

more informative testing and debugging but is more difficult to understand and customize.

Alternatively, the user has the option to compile and run using our very simple and intuitive

scripts without ever worrying about the nuts and bolts of the compiler architecture. Thus is the

story of developing the best little language for implementing custom board games: ROLL.

ITest Plan
Yipeng Huang,

Tester & Validator

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

I - 1

Test Plan
Yipeng Huang
Tester & Validator

Overview
Testing the ROLL compiler was done in three phases:

1) Automated regression test, which was done as new productions were added to
the Yacc parser. This test ensured that changes to the compiler did not interfere
with functionality that had already been implemented and tested.

2) Quality control test, which was done after the compiler front end was complete
to check for proper translation of language constructs. This test ensured that all
the features promised in the Language Reference Manual were delivered and that
the compiler was robust.

3) Whole program behavior test, which was done after each new game was
written in ROLL to check that the game framework handled the rules correctly
and generated a game that behaved according to the programmer’s intent. This
test ensured that generated programs were semantically equivalent to the ROLL
source.

Automated regression test
This test was done after each new production was added to the Yacc parser to make sure
the new language feature did not interfere with translating any other language construct.
As each language feature was added, a new ROLL program would be written to
specifically test that new functionality. These small ROLL programs accumulated and
were compiled again every time a later feature was added.

Automation using makefile
A makefile automated the compilation of this set of ROLL programs:

#makefile for the ROLL compiler

#c compilation
CC = gcc
CFLAGS = -g
LFLAGS = -ly -ll

#java compilation
JFLAGS = -g
JC = javac
.SUFFIXES: .java .class
.java.class:
 $(JC) $(JFLAGS) $*.java

#compiler source files
rlex = roll.l
ryacc = roll.y
tyacc = my.y
clex = lex.yy.c
cyacc = y.tab.c
name = game.r

I - 2

OUTPUTS_TO_CLEAN = BoardImplementation.java DiceImplementation.java
PlayersImplementation.java y.tab.h

#test files
t1 = Empty.roll
t2 = NewHello.roll
t3 = test3.roll
t4 = test4.roll
t5 = ArrayTest.roll
t6 = Statements.roll
t7 = test7.roll
t8 = test8.roll
t9 = Default.roll
t10 = advancedChutes.roll
t11 = test11.roll
t12 = IncrementalTest.roll
t13 = Sorry.roll

#backend source files
CLASSES = \
 Board.java \
 Dice.java \
 Driver.java \
 Game.java \
 Player.java \
 Players.java \
 Piece.java \
 Tile.java \
 Die.java

#make the lexer
lexer: $(rlex)
 flex $(rlex)

#make the syntax analyzer
parser: $(ryacc)
 yacc -d $(ryacc)

#make the test parser
tparser: $(tyacc)
 yacc -d $(tyacc)

#make the compiler
compiler: clean lexer parser
 $(CC) $(CFLAGS) -o $(name) $(cyacc) $(clex) $(LFLAGS)

#make the test compiler
tcompiler: clean lexer tparser
 $(CC) $(CFLAGS) -o $(name) $(cyacc) $(clex) $(LFLAGS)

#run all tests
test: test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 test11 test12 test13

#default test
test1: compiler $(t1)
 cat $(t1) | ./game.r

#hello world test
test2: compiler $(t2)
 cat $(t2) | ./game.r

#dice block test file
test3: compiler $(t3)
 cat $(t3) | ./game.r

#deck block test file
test4: compiler $(t4)
 cat $(t4) | ./game.r

I - 3

#in place array test file
test5: compiler $(t5)
 cat $(t5) | ./game.r

#simple statements test
test6: compiler $(t6)
 cat $(t6) | ./game.r

#prompt test
test7: compiler $(t7)
 cat $(t7) | ./game.r

#setupplayers test
test8: compiler $(t8)
 cat $(t8) | ./game.r

#default test
test9: compiler $(t9)
 cat $(t9) | ./game.r

#advancedChutes test
test10: compiler $(t10)
 cat $(t10) | ./game.r

#global variable reassignment test
test11: compiler $(t11)
 cat $(t11) | ./game.r

#IncrementalTest test
test12: compiler $(t12)
 cat $(t12) | ./game.r

#Sorry game test
test13: compiler $(t13)
 cat $(t13) | ./game.r

#make the backend
classes:
 javac Driver.java

run: classes
 java Driver

#clean output files
clean:
 -rm -f $(clex) $(cyacc) $(name) *.class *~ $(OUTPUTS_TO_CLEAN)

default: compiler

all: clean compiler
	

The test suite
The ROLL programs included in the regression test suite covered a broad range of
language elements, including syntax, comments, types, variable instantiation,
initialization, and reassignment, arithmetic operators, logical operators, and text
operators, and larger constructs such as conditionals and for-each loops.

I - 4

Quality control test
The automated regression tests described in the previous section guaranteed that the
compiler accepted existing programs as we added new features, but there was minimal
guarantee from regression testing that the semantics of ROLL programs were properly
preserved in the generated code.

Since the compiler front end and the backend Java framework evolved rapidly during
compiler development, it was difficult to test for correct semantics using just the
automated regression test. It was therefore necessary to test for the overall quality of the
compiler once the compiler became set in stone.

The quality control test took place after the compiler productions were fully implemented
and after the semantics of fundamental ROLL language features were well preserved,
even after many more layers of productions were added to the compiler.

Verifying features promised by the Language Reference Manual
To conduct the quality control test, we developed a single ROLL source file and
incrementally added code that utilized features mentioned in the Language Reference
Manual. These series of tests were organized in the same fashion as the Language
Reference Manual, guaranteeing that everything mentioned in the Manual was
incorporated. In the end, this test covered language constructs as small as ASCII
character recognition to higher-level constructs like conditionals and for-each loops.

The ROLL source code used for quality control testing follows:

…

 int
$myGlobalVariable1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM@#$%^&_\'
= -2147483648;
 int $myGV1 = -2147483648;
 int $myGV2 = 2147483647;
 int $myGVChange = 600;

…

 StartOn = {-1000000 ~ 1000000};

 define setupPlayers()
 {

 // print and comment tests
 // print("This shouldn't print.");
 print("This // should print.");
 print("This should print as well."); // end of line comment

 // text test
 print("All ASCII printable special characters:
~!@#$%^&*()_+`1234567890-={}|[]:;'<>?,./");

 // global variable test
 print("My ridiculous global variable = " |
$myGlobalVariable1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM@#$%^&_\')
;

 // integer bounds test
 print("lower bound integer = " | $myGV1);
 print("upper bound integer = " | $myGV2);

I - 5

 // global variable reassignment test
 print("$myGVChange = " | $myGVChange);
 $myGVChange = 700;
 print("reassignment: $myGVChange = " | $myGVChange);

 // array size test
 print("StartOn[2000000] = " | StartOn[2000000]);

 // arithmetic test
 print("(10/2) = " | (10/2));
 print("(10/3) = " | (10/3));
 print("(2147483647/3)*3 = " | (2147483647/3)*3);
 print("(1+1+1+1)*2 = " | (1+1+1+1)*2);
 print("(1+1-1-1) = " | (1+1-1-1));
 print("(1--1) = " | (1--1));
 print("(2+12)/(3+1+3) = " | (2+12)/(3+1+3));
 print("7+9 = " | 7+9);
 //print("1/0 = " | 1/0);

 // ++ and -- test
 int i = 20;
 print ("int i = " | i);
 print ("int i++1 = " | i++1);
 print ("int i = " | i);
 print("(1--1) = " | (1--1));

 // relop and logical operators test
 int a = 7;
 int b = 9;
 if ((a==7)&&(a==a)&&(b>a)&&(a<b)&&(a!=b)&&!((a>b)||(b<a)||(a==b)))
{
 print("This line should print");
 }
 if
(!((a<=b)&&(a<=a)&&(b>=a)&&(b<=b)&&(a!=b)&&!((b<=a)||(a>=b)||(a==b)))) {
 print("This line should NOT print");
 }

 // if-else statements test
 if (a==a) {
 if (b==b) {
 if (a==b) {
 print("IF ELSE TEST: This should not
print.");
 } else if (a<a) {
 print("IF ELSE TEST: This should not
print.");
 } else {
 if (a==a) {
 print("IF ELSE TEST: This should
print.");
 }
 }
 }
 }

 // array bounding test
 print("***Array bounding using variables test");
 int bound = 70;
 int #myArray = {bound ~ $myGVChange};
 print("myArray's upper bound = " | #myArray[69]);
 int #myArray2 = {2, 3, bound};
 print ("myArray2[0] = " | #myArray2[0]);
 print ("myArray2[1] = " | #myArray2[1]);
 print ("myArray2[2] = " | #myArray2[2]);

 print("int bound's value is now = " | bound);

I - 6

 //empty print statement test
 print("empty print statement test follows");
 print("");
 print("empty print statement test complete");

…

The results of this test can be found in the section, ROLL Validation Documentation, in
the appendix.

Stress testing
As part of quality control testing, the test case was written to stress test the compiler and
the Java backend framework. The test case used very large integer values, arrays of very
large size, and highly nested conditionals and for-each loops that iterated many times to
test that the generated programs executed at reasonable speed.

Whole program test
The quality control test was suitable for testing language features that are relatively low-
level, such as data types, arithmetic, and loops. To test that the compiler preserved the
semantics for larger language constructs such as block-level fields, object data types, user
IO, and functions, we switched the testing methodology to test the compiler with whole
games.

Testing of larger language constructs
In the process of developing the compiler and preparing for various checkpoints, the team
created a number of complete ROLL games ranging from the relatively simple default
game, to more complex games such as Chutes and Ladders, and ultimately to a highly
complex game, Sorry!.

Since the code for these games draws on a wide variety of language constructs, fields,
object data types, and functions, testing for correct behavior in the generated games from
these ROLL programs was a strong test on the validity of the compiler and the backend
framework.

Testing behavior of games
In designing a game’s test suite, we took note of what fields and functions each
individual game utilized, and made sure that the all fields, functions, object data types,
and blocks were utilized among the set of test games.

For each game, we verified that the game preserved the semantics of the ROLL source
code by checking for correct game behavior at all stages of the game.

The results of this test can be found in the section, ROLL Validation Documentation, in
the appendix.

JConclusions

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

J - 1

CONCLUSIONS

Lessons learned as a team

Working on a team is a very different from working solo. Coordinating schedules,

making sure that code isn’t omitted with shared files, and verifying that others’ work is

submission-ready are some of the issues we’ve run into as a team. That being said

though, we came into this class as a group of five friends. We knew we were working

together and we set early deadlines. Even despite these efforts to finish in a timely

manner, the programming lesson we learned from Prof. Cannon in 1004 remains:

“Multiply your expected time by 4, then multiply that by 10 to get your actual coding

time.”

However it has been a truly successful class, and we all agree that it has been one of the

best classes we’ve ever taken at Columbia, if not the best. How many students can say

they wrote their own programming language? And then actually write a program in it!

How many students can put Flex and Yacc on their resume? Seeing that final board game

show up, after all those intermediate compiling steps, was by far one of the most

rewarding programs we’ve ever created. Rarely do you get a chance to write 1000+ line

programs in a custom language.

It is also indescribably helpful to have a professor that is so genuinely helpful. He is

beyond an expert in this field and knows how difficult the material and project are.

Professor Aho knows what students have difficulty with, and really wants to see them

succeed.

J - 2

Lessons learned by each team member

Lauren Pully

Project Manager

As project manager, it is important to make sure that the group stays on task. Although

the semester seems like a lot of time, it will go by quickly. When everyone becomes

excited about the details, it was important to help the team focus on the goal at hand –

finishing our compiler. As project manager I had two approaches to this. First, it was

important to make sure that everybody left every meeting with a concrete list of next

steps. More importantly, however, it was necessary not to quell the enthusiasm at

meetings when we talked about more high-level ideas. Instead I learned to wait these

“deviations” out – it was during some of these deviations from the day’s stated goal that

we accomplished the most. Once we had solidified some of our new ideas we were able

to get back on track. Working on a group project with five people is not easy, but it can

be fun!

John Graham

System Architect

As the system architect, I had a lot of trouble grasping all the steps of a complete

translator. Paying attention in class and talking concepts through with other group

members is very helpful in understanding theory. As a team member, I learned that you

have to be proactive in your work. You can’t wait for someone to tell you that something

needs to be done, especially if something needs to be done on your specific job function.

J - 3

Getting caught up to speed is easier said than done! It helps to work with people that have

a similar work ethic and are equally interested in the project (i.e. willing to stay up on a

Friday night until 4:00am, but still passionate about the project). Stay on top of your

work, and don’t let you or any team members slip behind. Make use of positive feedback,

it really promotes good work!

Jesse Bentert

Language Guru

As language guru, one thing I have learned from this project is that after the semester-

long process of coming up with design decisions for our language, it is a challenging task

to then present what we have designed in written form. Unlike my team members and

me, our readers are unfamiliar with our language and have not been around it for an

entire semester. What seems obvious to us is probably very confusing to them. Thus,

we realized it was imperative to figure out how we could present our language in a clear

and logical way, so that someone unfamiliar with our language could easily pick it up and

understand how everything works. I was surprised at how time-consuming this task was;

I assumed the majority of our time for this project would be devoted to actually coding.

This goes to show that to be a computer scientist, it is not enough to be great at coding

algorithms; one must be able to clearly communicate his/her ideas to the world.

J - 4

Daniel Wilkey

System Integrator

First and foremost, I learned the importance of setting and keeping to a specific,

actionable schedule. I have never before worked on a project of this scale and time frame

and being constantly conscious of one’s progress and both short-term and long-term goals

is invaluable. There is no worse question to address upon completion of an assigned

piece of work than ‘what should I do next?’ It is much easier to remain efficient when

you have too much work than too little. Initially I believe that we were too preoccupied

with the titles of our team roles and not the overall task at hand. The next lesson I

learned was to start small. During the first few meetings of the semester, it is easy to start

proposing as many features as pop into your head, but delivering on all of them in the

long run is a much different story. I have found that it is much more satisfactory not to

promise a feature at the onset and if, by chance, it ships with the finished product, then

the user may be impressed by the added functionality. If the opposite occurs, then a

natural reaction on the part of the end-user would be disappointment. Finally, I have

learned it is important to stay grounded as a team. Every team member should have a

good idea of the bigger picture and keep this image engrained throughout the process. If

one team member is working to meet one goal and the rest are working towards another,

it is easy to end up with an incongruous project at a late stage. When direction is clear, as

long as team members are not working tangentially, progress can be achieved.

J - 5

Yipeng Huang

Tester & Validator

As compiler tester and validator, I had first-hand experience facing the challenges of

formally testing the language and verifying that the features we promised in the

Language Reference Manual are properly implemented in the language. Staying in

constant contact with my teammates was the most important step in successfully testing

the language. Because our team updated each other on language features changes, I was

able to guarantee that all aspects of the language were tested and make appropriate bug

reports and documentation changes to the Manual. In preparing and language

documentation and the slides, I learned how important it is to establish clear terminology.

Once we had agreed on the nomenclature of the various fields, functions, and other

features of the language, ensuring that the presentation and the documentation were

consistently worded became relatively easy. This project was most certainly a case

where communication was the key to success, and I am thankful that my team was well

equipped in this skill.

Advice for future teams

The success of our project depended largely upon the fact that our group worked well

together. Try to work in a group with people that you know – if you do not know anyone

in the class then find a group early on and get to know them in a setting other than this

J - 6

project. This allows you to work together as much as possible and enjoy meetings – you

will be having a lot of them.

It is also important to start early. The end of the semester will come sooner than you

think. A good goal is to have a working compiler for the presentation – though you will

not be completely finished, this means that you do not have to spend your entire reading

week working on the compiler.

Finally, enjoy your language and have fun with it! Make sure you pick something

appealing to your entire team – you will spend a lot of time working with it.

Suggestions for the instructor on what topics to keep, drop, or add in

future courses

Programming Languages and Translators is unlike any class we’ve ever taken. The

classes were interesting and well structured. The downloadable lecture outlines were

very useful as a guide for taking notes in class. Both of the guest speakers were very

interesting – it was great to hear people talk about the projects that they have worked on.

We would definitely recommend inviting the guest speakers back. It would have been

nice to have problem sets due throughout the semester (perhaps take the best 20/24

homework grades?). Though the practice questions were a good guideline for keeping up

with work, the practice problems that we turned in after the semester were very helpful

because we received relatively instant feedback on our performance. Overall we are all

very happy that we took this class and definitely would recommend it to our peers.

KAppendix

K.1 - List of Source Code and Authors
K.2 - Language Grammar
K.3 - Validation Documentation

a language for designing board games

Language Reference Manual

Jesse Bentert - jrb2137
John Graham - jwg2116
Yipeng Huang - yh2315
Lauren Pully - lep2128

Dan Wilkey - dwg2109

A

B

C

D

E

F

G

H

I

J

K

Introduction

Language Tutorial

Primer on Organizing
ROLL Code

Language Reference
Manual

Project Plan

Language Evolution

Translator
Architecture

Development
Environment

Test Plan

Conclusions

Appendix

K	
 –	
 List	
 of	
 source	
 code	
 and	
 authors	
 -­‐	
 1	

File Name Type Author
Makefile Makefile Dan
roll script Dan/Jesse
rollc script Dan/Jesse
images jpg Lauren
advancedChutesBoardComponent.java Java Lauren
Board.java Java Jesse
BoardComponent.java Java Lauren
BoardImplementation.java Java Jesse
Card.java Java Jesse
ChutesTile.java Java Lauren
Deck.java Java Jesse
Dice.java Java Jesse
DiceImplementation.java Java Jesse
Die.java Java Jesse
Driver.java Java Jesse
Game.java Java Jesse
GlobalVariables.java Java Jesse
GridTile.java Java Lauren
NextTurnListener.java Java Lauren
PerimeterTile.java Java Lauren
Piece.java Java Lauren
Player.java Java Lauren
Players.java Java Lauren
PlayersImplementation.java Java Jesse
ScrollPane.java Java Lauren
SnakeTile.java Java Lauren
SorryBoardComponent.java Java Lauren
SorryTile.java Java Lauren
SpecialBoardComponent.java Java Lauren
Tile.java Java Jesse
TileLocationReturner.java Java Lauren
Window.java Java Lauren
roll.l Flex Dan/Jesse
advancedChutes.roll ROLL Dan/Jesse
ArraySetTest.roll ROLL Dan/Jesse
ArrayTest.roll ROLL Dan/Jesse
customArrayTest.roll ROLL Dan/Jesse
Default.roll ROLL Dan/Jesse
Empty.roll ROLL Dan/Jesse
Hello.roll ROLL Dan/Jesse
IncrementalTest.roll ROLL Yipeng
NewHello.roll ROLL Dan/Jesse
ScopeTest.roll ROLL Yipeng
ScopeTestDeck.roll ROLL Yipeng
ScopeTestDice.roll ROLL Yipeng
SimpleChutes.roll ROLL Dan/Jesse

K	
 –	
 List	
 of	
 source	
 code	
 and	
 authors	
 -­‐	
 2	

Sorry.roll ROLL John
Statements.roll ROLL Dan/Jesse
test3.roll ROLL Dan/Jesse
test4.roll ROLL Dan/Jesse
test7.roll ROLL Dan/Jesse
test8.roll ROLL Dan/Jesse
test11.roll ROLL Dan/Jesse
my.y Yacc Dan/Jesse
roll.y Yacc Dan/Jesse
	

HIGH	
 LEVEL	
 GRAMMAR

NON-­‐TERMINAL: PRODUCTION:

program GAME IDEN LEFTBRACE game_def RIGHTBRACE

game_def global_vars players_block board_block dice_deck_block

board_block BOARD	
 LEFTBRACE board_def RIGHTBRACE

E

dice_deck_block dice_block

deck_block

E

dice_block DICE LEFTBRACE dice_definiJon RIGHTBRACE

deck_block DECK LEFTBRACE deck_definiJon RIGHTBRACE

players_block PLAYERS LEFTBRACE players_def RIGHTBRACE

E

global_vars global_dec global_vars

E

global_dec INT GLOBALIDEN ASSIGN_OP rhs SEMICOLON

NON-­‐TERMINAL: PRODUCTION:

players_block PLAYERS LEFTBRACE players_def RIGHTBRACE

E

player_def play_decs play_funs

play_decs gui_def max_player_ef min_player_def num_pieces_def start_on_def finish_on_def num_players_def

max_player_def MAXPLAYERS ASSIGN_OP rhs SEMICOLON

E

min_player_def MINPLAYERS ASSIGN_OP rhs SEMICOLON

E

num_pieces_def NUMPIECES ASSIGN_OP rhs SEMICOLON

E

start_on_def STARTON ASSIGN_OP in_place_array SEMICOLON

E

play_funs DEFINE SETUPPLAYERS LEFTBRACE stmt_list RIGHTBRACE

E

gui_def GUI ASSIGN_OP rhs SEMICOLON

E

finish_on_def FINISHON ASSIGN_OP in_place_array SEMICOLON

E

num_players_def NUMPLAYERS ASSIGN_OP rhs SEMICOLON

E

PLAYERS	
 BLOCK	
 GRAMMAR

BOARD	
 BLOCK	
 GRAMMAR

NON-­‐TERMINAL: PRODUCTION:

board_block BOARD	
 LEFTBRACE board_def RIGHTBRACE

E

board_def Ale_def board_funs

Ale_def

board_funs

E

Ale_def qty Ale_list

qty

Ale_list Ale Ale_list

Ale

qty NUMTILES ASSIGNOP rhs SEMICOLON

board_funs pre_roll goal_check

goal_check pre_roll

pre_roll

goal_check

lands_on_fun

pre_roll goal_check lands_on_fun

pre_roll lands_on_fun goal_check

lands_on_fun goal_check pre_roll

lands_on_fun pre_roll goal_check

goal_check lands_on_fun pre_roll

goal_check pre_roll lands_on_fun

lands_on_fun pre_roll

pre_roll lands_on_fun

lands_on_fun goal_check

goal_check lands_on_fun

Ale MAKE TILE LEFTPARENS Ale_args RIGHTPARENS SEMICOLON

Ale_args index nxt prv opAonal

index ID COLON rhs COMMA

nxt NEXT COLON rhs COMMA

prv PREV COLON rhs

acc COMMA ACCESSIBLE COLON in_place_array

E

lands_on COMMA LANDSON COLON IDEN

goal_check DEFINE GOALCHECKFUNCTION LEFTBRACE stmt_list RIGHTBRACE

pre_roll DEFINE PREROLLFUNCTION LEFTBRACE stmt_list RIGHTBRACE

lands_on_fun FUNCTION IDEN ASSIGNOP DEFINE LANDSONFUNCTION LEFTBRACE stmt_list RIGHTBRACE lands_on_fun

FUNCTION IDEN ASSIGNOP DEFINE LANDSONFUNCTION LEFTBRACE stmt_list RIGHTBRACE

opAonal acc lands_on

acc

lands_on

E

NON-­‐TERMINAL: PRODUCTION:

dice_block DICE LEFTBRACE dice_defini=on RIGHTBRACE

dice_defini=on die_list roll_func=on

E

die_list die_defini=on die_list2

die_list2 die_defini=on die_list2

E

die_defini=on MAKE DIE LEFTPARENS FACES COLON rhs RIGHTPARENS SEMICOLON

roll_func=on DEFINE ROLLFUNCTION LEFTBRACE stmt_list RIGHTBRACE

E

DICE	
 BLOCK	
 GRAMMAR

NON-­‐TERMINAL: PRODUCTION:

deck_block DECK LEFTBRACE deck_defini>on RIGHTBRACE

deck_defini>on has_rep card_defs roll_funs

has_rep HASREPLACEMENT ASSIGNOP rhs SEMICOLON

card_defs card_defini>on card_defs2

card_defs2 card_defini>on card_defs2

E

card_defini>on MAKE CARD LEFTPARENS card_args RIGHTPARENS SEMICOLON

card_args card_val card_quan>ty card_fun

card_val VALUE COLON rhs

card_quan>ty COMMA QUANTITY COLON rhs

card_fun COMMA ROLL COLON IDEN

E

roll_funs named_roll_func>on roll_funs

E

named_roll_func>on FUNCTION IDEN ASSIGNOP DEFINE ROLLFUNCTION LEFTBRACE stmt_list RIGHTBRACE

DECK	
 BLOCK	
 GRAMMAR

NON-­‐TERMINAL: PRODUCTION:

int_type IDEN

GLOBALIDEN

INTEGER

compound_int

pre_def_var

compound_int PLAYERLIST LEFTBRACKET rhs RIGHTBRACKET PERIOD PIECELIST LEFTBRACKET rhs RIGHTBRACKET PERIOD OCCUPIEDTILEID

TILELIST LEFTBRACKET rhs RIGHTBRACKET PERIOD Ile_field

STARTON LEFTBRACKET rhs RIGHTBRACKET

FINISHON LEFTBRACKET rhs RIGHTBRACKET

ARRAYIDEN LEFTBRACKET rhs RIGHTBRACKET

Ile_field NEXT

PREV

ACCESSIBLE LEFTBRACKET rhs RIGHTBRACKET

OCCUPIERID

rhs rhs PLUSMINUS t

t

t t TIMESDIV s

s

s LEFTPARENS rhs RIGHTPARENS

PLUSMINUS s

int_type

text_seq text_type CONCAT text_seq

text_type

text_type LITERAL

PLAYERLIST LEFTBRACKET rhs RIGHTBRACKET PERIOD NAME

rhs

text text_seq

expr expr2 BOOLOP expr

expr2

EXPRESSIONS	
 GRAMMAR

expr2 rhs RELOP rhs

LEFTPARENS expr RIGHTPARENS

NOT LEFTPARENS expr RIGHTPARENS

list int_list

PLAYERLIST

PLAYERLIST LEFTBRACKET rhs RIGHTBRACKET PERIOD PIECELIST

int_list in_place_array

TILELIST LEFTBRACKET rhs RIGHTBRACKET PERIOD ACCESSIBLE

TILELIST LEFTBRACKET rhs RIGHTBRACKET PERIOD NEXT

TILELIST LEFTBRACKET rhs RIGHTBRACKET PERIOD PREV

STARTON

FINISHON

ARRAYIDEN

in_place_array LEFTBRACE standard RIGHTBRACE

LEFTBRACE short_hand RIGHTBRACE

standard standard2

E

standard2 rhs COMMA standard2

rhs

short_hand rhs TILDA rhs

pre_def_var MAXPLAYERS

MINPLAYERS

NUMPIECES

NUMPLAYERS

NUMTILES

NEXTTURN

GUI

NON-­‐TERMINAL: PRODUCTION:

stmt_list stmt stmt_list

E

stmt declara;on

assignment

if_stmt

for_stmt

funcall

declara;on INT IDEN ASSIGN_OP rhs SEMICOLON

INT IDEN SEMICOLON

INT ARRAYIDEN LEFTBRACKET rhs RIGHTBRACKET SEMICOLON

INT ARRAYIDEN ASSIGN_OP in_place_array SEMICOLON

assignment IDEN ASSIGNOP rhs SEMICOLON

GLOBALIDEN ASSIGNOP rhs SEMICOLON

NEXTTURN ASSIGNOP rhs SEMICOLON

ARRAYIDEN LEFTBRACKET rhs RIGHTBRACKET ASSIGN_OP rhs SEMICOLON

funcall print

winner

move_funcall

move_reverse_funcall

jump_funcall

prompt_list_funcall

prompt_range_funcall

prompt_name_funcall

winner DECLAREWINNER LEFTPARENS rhs RIGHTPARENS SEMICOLON

DECLAREWINNER LEFTPARENS RIGHTPARENS SEMICOLON

prompt PROMPTLIST LEFTPARENS IDEN COMMA list RIGHTPARENS SEMICOLON

PROMPTRANGE LEFTPARENS IDEN COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

PROMPTTEXT LEFTPARENS IDEN RIGHTPARENS SEMICOLON

print PRINT LEFTPARENS text RIGHTPARENS SEMICOLON

move MOVE LEFTPARENS rhs COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

MOVEREVERSE LEFTPARENS rhs COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

JUMP LEFTPARENS rhs COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

if_stmt IF LEFTPARENS expr RIGHTPARENS LEFTBRACE stmt_list RIGHTBRACE else_stmt

else_stmt ELSE IF LEFTPARENS expr RIGHTPARENS LEFTBRACE stmt_list RIGHTBRACE else_stmt

ELSE LEFTBRACE stmt_list RIGHTBRACE

E

for_stmt FOR LEFTPARENS INT IDEN COLON int_list RIGHTPARENS LEFTBRACE stmt_list RIGHTBRACE

move_funcall MOVE LEFTPARENS rhs COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

move_reverse_funcall MOVEREVERSE LEFTPARENS rhs COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

STATEMENTS	
 GRAMMAR

jump_funcall JUMP LEFTPARENS rhs COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

prompt_list_funcall PROMPTLIST LEFTPARENS variable COMMA in_place_array RIGHTPARENS SEMICOLON

PROMPTLIST LEFTPARENS variable COMMA ARRAYIDEN RIGHTPARENS SEMICOLON

prompt_range_funcall PROMPTLIST LEFTPARENS variable COMMA rhs COMMA rhs RIGHTPARENS SEMICOLON

prompt_name_funcall PROMPTNAME LEFTPARENS player_name RIGHTPARENS SEMICOLON

player_name PLAYERLIST LEFTBRACKET rhs RIGHTBRACKET PERIOD NAME

variable IDEN

GLOBALIDEN

pre_def_var

array_var

array_var ARRAYIDEN LEFTBRACKET rhs RIGHTBRACKET

STARTON LEFTBRACKET rhs RIGHTBRACKET

FINISHON LEFTBRACKET rhs RIGHTBRACKET

K.3 – ROLL Validation Documentation - 1

ROLL Validation Documentation Excerpt
System Integration Test

Purpose:
This test case is a systems integration test to ensure that the compiler environment is correctly set up and that all components function together
correctly. This test case uses the empty ROLL source code to test:

1. functionality of MakeFile
2. the creation of the lexer created by Flex upon compiling the lexer specification roll.l
3. the creation of the parser created by Yacc upon compiling the parser specification my.y. Note that my.y captures each token returned by the

lexer and prints the token name to the console. No changes are made to the default ROLL game framework.
4. the creation of the parser created by Yacc upon compiling the parser specification roll.y
5. the creation of the Java class files created by javac upon compiling the java source files that compose the ROLL game framework.
6. the validity of the Java class files generated by the compiler. The class files should be properly integrated with each other and should be able

to run without errors.
7. the validity of the compiler executable when run in a memory checking environment, in this case Valgrind

Test results:
Test subcases Test description ROLL source code used in test Expected result Actual result Special notes
Token recognition test Use the lexer generated by the

lexer specification roll.l, in
conjunction with the parser
generated by the parser
specification my.y, to test that the
lexer returns the correct tokens in
the correct order.

Game Default {} The lexer should return, in order, the
token for the reserved word “Game”,
the identifier for the name of the
game “Default”, and a set of opening
and closing braces.

The tokens returned in order:
GAME
IDEN, yylval: Default
LEFTBRACE
RIGHTBRACE

Passed

Token response test Use the lexer generated by the
lexer specification roll.l, in
conjunction with the parser
generated by the parser
specification roll.y, test that the
parser responds to the tokens as
expected and modifies the Java
game framework as expected.

Game Default {} The parser should generate concrete
Java source files for
BoardImplementation,
DiceImplementation,
PlayersImplementation that are blank
other than the class signature, a
constructor, and a call to the
superclass constructor.

a. Generated code for
BoardImplementation.java:

public class
BoardImplement
ation extends
Board{
 public
BoardImplement
ation(Player[]
players){

 super(playe
rs);
 }
}

b. Generated code for
DiceImplementation.java:

Passed

K.3 – ROLL Validation Documentation - 2

 public class
DiceImplementation
extends Dice{

 public
DiceImplementat
ion(Player[]
players){

 super(playe
rs);
 }
}

c. Generated code for
PlayersImplementation.java:
 public class
PlayersImplementation
extends Players{
}

Memory integrity test Use the lexer generated by the
lexer specification roll.l, in
conjunction with the parser
generated by the parser
specification roll.y, and execute
the compiler executable game.r
under valgrind.

Game Default {} The output from Valgrind should
report that the only memory leaks are
those deliberately left by Flex in order
to communicate with Yacc.

 Passed

Status and recommendations:
The blank concrete classes were generated as expected. The functionality of the completed game is governed by the abstract classes that are part of
the ROLL game framework. No overrides were provided by the compiler.

Language Features Incremental Tests: Syntax

Purpose:
This set of test cases tests the language features described in the Language Reference Manual, under the Syntax section. Features mentioned in other
sections of the Language Reference Manual are required to run this set of tests, and they are assumed to operate correctly for the purposes of this test.

The test will validate the functionality of the following features:

1. The set of ASCII characters that are valid for use in variable names
2. Ability of the compiler to properly remove white space in the form of spurious spaces, new lines, and tabs.
3. The proper functioning of in line comments

Test results:
Test subcases Test description ROLL source code used in test Expected result Actual result Special notes
Whitespace recognition and
elimination test

Test that the compiler can
recognize and ignore all spurious
white space in the form of spaces,
new lines, and tabs

IncrementalTest.roll, which is
based off of Default.roll.

White space was added around
various language constructs.

Compiler should be able to
compile even with the additional
confusing white space.

The compiler successfully parsed
and ignored white space.

Passed.

K.3 – ROLL Validation Documentation - 3

Comment elimination test Test that the compiler recognizes
// as a cue to ignore the rest of the
line.

In all other contexts, specifically,
within text strings surrounded by
“ ”, the character pair // should not
cause the rest of the line to be
ignored.

IncrementalTest.roll, which is
based off of Default.roll.

// print("This shouldn't print.");

print("This // should print.");

print("This should print as well.");
// end of line comment

The java program should, upon
execution, display:

This // should print.
This should print as well.

The program displayed the lines
as expected.

Passed.

It is safe to include // within text
strings surrounded by “ “. No
escape characters are necessary to
suppress the behavior of line
commenting.

Status and recommendations:
The basic syntax constructs mentioned in the Language Reference Manual are all correctly implemented in the ROLL compiler.

Language Features Incremental Tests: Primitive Types

Purpose:
This set of test cases tests the language features described in the Language Reference Manual, under the Primitive Types section. Features mentioned
in other sections of the Language Reference Manual are required to run this set of tests, and they are assumed to operate correctly for the purposes of
this test.

The test will validate the functionality of the following features:

1. The integer type and its valid bounds in the ROLL language
2. Text type and the acceptable characters in text
3. Array instantiation using comma separated values
4. Array instantiation using the short hand notation specifying the lower and upper bounds of the array.
5. Array instantiation using comma separated values or short hand notation using any combination of global and local variables as the initial

values.
6. Automatic casting of integers to text in print statements.

Test results:
Test subcases Test description ROLL source code used in test Expected result Actual result Special notes
Integer type test Tests the upper and lower bounds

of allowable integers in the ROLL
language. This confirms that the
acceptable integer values in
ROLL are the same as those in
Java.

IncrementalTest.roll, which is
based off of Default.roll.

$myGV1 = -2147483648;

$myGV2 = 2147483647;

The Java game program should
display these two values
accurately.

The values are displayed to the
console without error.

Passed.

Text type test Tests that all ASCII characters
can be accepted by the ROLL
compiler and can be validly used
in user defined texts, such as those
in print statements.

IncrementalTest.roll, which is
based off of Default.roll.

The following print statement is
included:

print("All ASCII printable
characters:
~!@#$%^&*()_+`1234567890-

The Java game should print all the
ASCII characters correctly, with
the exception of the character “,
which indicates the end of a text
string.

The character \ is illegal in ROLL
text strings as well. Passing on \ to
the Java compiler within a text
string cues the Java compiler to
anticipate an escape character,
which leads to unpredictable
behavior.

Passed.

All ASCII characters are
allowable in ROLL text with the
exception of “ and \

K.3 – ROLL Validation Documentation - 4

={}|[]:;'<>?,./");
Regular array instantiation test Tests that regular array

instantiation using comma
separated values behaves as
expected.

IncrementalTest.roll, which is
based off of Default.roll.

The following instantiation of the
StartOn array is included:

StartOn = {1,2,3,4,5,6};

The sixth value of the array is
printed to console to test that the
array was accurately instantiated.

The sixth value in the array, 6,
should be printed correctly.

The console prints the expected
result:

StartOn[5] = 6

Passed.

Shorthand array instantiation test Tests how big integer arrays can
safely be in the ROLL language.

IncrementalTest.roll, which is
based off of Default.roll.

The following instantiation of the
StartOn array is included:

StartOn = {-1000000 ~ 1000000};

The last element of the array is
printed to the console:

print("StartOn[2000000] = " |
StartOn[2000000]);

The program should safely
display the value of the last item
in the array, 1000000.

The program prints 1000000
correctly.

Passed.

Forcing the compiler to generate
an array of size 2147483647, the
largest integer value in Java,
failed.

The compiler is guaranteed to
behave accurately for arrays up to
size 2000001.

Regular and shorthand array
instantiation using variables as
values

Tests that regular array
instantiation can also be done
passing in local variables, global
variables, and values from other
arrays.

int #myArray3 = {800, 900};

int #myArray4 = { #myArray3[0],
#myArray3[1] };

int #myArray5 = { #myArray3[0]
~ #myArray3[1] };

print("#myArray4[0] = " |
#myArray4[0]);

print("#myArray4[1] = " |
#myArray4[1]);

print("#myArray5[1] = " |
#myArray5[1]);

print("#myArray5[98] = " |
#myArray5[98]);

The compiler should be able to
handle instantiating and
initializing values for arrays using
any combination of local
variables, global variables, and
integers stored in arrays.

The compiler instantiated and
initialized values correctly.

Passed.

Integer to text automatic casting
test

Test the functionality of automatic
casting from integers to text
within print() statements.

No separate test source code is
necessary.

The program should be able to
display integers as if it were
strings.

The automatic casting of integers
to text functions correctly.

Passed.

Status and recommendations:
The above series of tests establishes the bounds and limitations of primitive types in the ROLL language. It is established that the ROLL program
can accurately handle arrays of up to size 2,000,001, and that the ASCII characters ‘\’ and “ are forbidden within text types. No escape sequences are
incorporated into the language design. These limitations are established to not hinder the ability of a ROLL programmer to design games in any
significant way.

K.3 – ROLL Validation Documentation - 5

Language Features Incremental Tests: User-Initialized Variables

Purpose:
This set of test cases tests the language features described in the Language Reference Manual, under the User-Initialized Variables section. Features
mentioned in other sections of the Language Reference Manual are required to run this set of tests, and they are assumed to operate correctly for the
purposes of this test.

The test will validate the functionality of user-defined global integer variables.

Test results:
Test subcases Test description ROLL source code used in test Expected result Actual result Special notes
User-defined local integer
variable test

Test that user-defined local
integer variables behave correctly.

This functionality is tested
simultaneously in the section
about for-each loops.

Local variables should be
properly instantiated, read from,
and written to.

The local variables are accurately
instantiated, displayed to the
console, and reassigned a value.

Passed.

User-defined global integer
variable test

Test that user-defined global
variables function correctly.

IncrementalTest.roll, which is
based off of Default.roll.

The following lines were added to
test the functionality of
instantiating, reading from, and
reassigning values to a user-
defined global variable:

$myGVChange = 600;

print("$myGVChange = " |
$myGVChange);

$myGVChange = 700;

print("reassignment:
$myGVChange = " |
$myGVChange);

Global variables should be
instantiated properly, read from,
and written to.

The global variable was correctly
instantiated, displayed to the
console, and reassigned a value.

Passed.

User-defined local integer array
test

Test that user-defined local
integer arrays behave correctly.

The code used in testing array
instantiation in the previous
section serves as an adequate test
case for this functionality.

User-defined local integer arrays
should be properly instantiated,
read from, and written to.

The local integer array was
correctly instantiated, its values
were correctly displayed to the
console and reassigned values.

Passed.

Status and recommendations:
The functionality of global variables reassignment originally did not work and was reported as a bug in the compiler. Its functionality is now verified
to be complete.

With the completion of this test suite, it is verified that ROLL programmers have access to three types custom-defined variables or arrays: 1. local
integer variables, 2. globally-visible integer variables, 3. local integer arrays. For instantiating arrays, there are two forms of syntax for initializing
values, and variables can be used as the arguments for initializing arrays.

	_--ROLL Language Documentation Cover
	A--Chapter Cover
	A--Whitepaper
	B--Chapter Cover
	B--Language Tutorial
	C--Chapter Cover
	C--Primer
	D--Chapter Cover
	D--Language Reference Manual
	E--Chapter Cover
	E--Project Plan (Lauren)
	F--Chapter Cover
	F--Language Evolution (Jesse)
	G--Chapter Cover
	G--Translator Architecture (John)
	H--Chapter Cover
	H--Development Environment (Dan)
	I--Chapter Cover
	I--Test plan (Yipeng)
	J--Chapter Cover
	J--Conclusions
	K--Chapter Cover
	K.1--List of source code and authors
	K.2--Grammar 1 High Level Grammar
	K.2--Grammar 2 Players Block Grammar
	K.2--Grammar 3 Board Block Grammar
	K.2--Grammar 4 Dice Block Grammar
	K.2--Grammar 5 Deck Block Grammar
	K.2--Grammar 6 Expressions Block Grammar
	K.2--Grammar 7 Statements Grammar
	K.3--Validation Documentation

