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In this report, we will present the software 
optimizations, hardware configurations, performance, 
and power analysis of four processor designs.  The 
following section shows the configuration and results 
of our best hardware design (Design B), with an 
objective function of 351.4.  From there, we will 
describe the steps we took to eventually achieve this 
value. 
 
You may find our other configurations and 
corresponding performance tables (Designs A, C, D) at 
the end of the report, in the Appendix.  We will be 
referring to those designs throughout the report. 
 

Simulation Results 
 
Design B—Multi Core Final 
Configuration: 
Core count 2 
Core type Small out-of-order cores 
Issue width 1 
Frequency 2.1 GHz 
  
IL1 Cache Size 16384 
IL1 Associativity 1 
IL1 Access Time (ns) 0.326370006889 
IL1 Access Time (cc) 1 
  
DL1 Cache Size 32768 
DL1 Associativity 8 
DL1 Access Time (ns) 1.64704053756 
DL1 Access Time (cc) 4 
  
Cache Block Size 128 
 
Performance: 
 Power Time Speedup 

over base 
simsmall 19.119W 5.277ms 352.8 
simmid 18.965W 68.836ms 355.0 
simlarge 18.596W 324.883ms 347.0 
Objective 
Function 

  351.4 

 

Software Optimizations 
 
The final project called for two important methods in 
optimizing the matrix multiplication program: 
optimizing code and optimizing hardware. Before even 
running trials, we analyzed the code to determine 
where the number of computations could be reduced 
and where code could be made more efficient. 
 
We started by looking at the brute force algorithm that 
was supplied to us, shown below. Looking at the two 
lines that are in bold, we determined that there are a 
lot of extraneous calculations in this brute force 
algorithm.  
 
for(j=0; j<a[0]; j++) 
{ 
 for(k=0; k<a[*b2+1]; k++) 
 { 
  B[*b2][j][k] = 0; 
  for(l=0; l<a[*b2]; l++) 
  { 

B[*b2][j][k] += 
B[*b1][j][l] * 
A[*b2][l][k]; 

  } 
 } 
} 
 
For every multiplication in the algorithm, this brute 
force method accesses a point in memory relative to a 
3-dimensional array. The second line that is bolded is a 
good example of why this computation is not optimal. 
First of all, modifying  B[*b2][j][k] for every 
iteration of l requires a computation of *b2, j, and k 
such that the memory address is relative to the 
double ***B. This alone uses several additions and 
multiplications to compute the address current address 
in memory. However, it’s interesting to note that in the 
innermost for loop, the address of B[*b2][j][k] 
never changes because the loop is iterating over l, but 
the address in memory is being recalculated every time. 
Therefore, this is an extraneous calculation and can be 
eliminated. An optimized version of the brute force 
algorithm is displayed below. 
 
for(j=0; j<a[0]; j++)  
{ 
 for(k=0; k<a[*b2+1]; k++) 
 { 
  double tempNum = 0; 
  double a1 = B[*b1][j]; 
  for(l=0; l<a[*b2]; l++) 
  { 
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tempNum += a1[l] 
* A[*b2][l][k]; 

  } 
  B[*b2][j][k] = tempNum; 
 } 
} 
 
We added a temporary variable that keeps track of 
result values in the matrix. This allows for the removal 
of the calculation in the for loop over l that caused a 
lot of unnecessary calculations. 
 
After running the new code with the default 
“NoL2SinglePower.conf” file, we were able to reduce 
the number of computations significantly using 
tempNum, which eliminates the 3-dimensional matrix 
calculations in every iteration of l, and plugs it into the 
matrix at the end of the computations. It reduced the 
number of instructions from 32,142,898 instructions to 
19,204,179, a reduction by 40.3% of the number of 
computations (time on a small matrix, for example, 
reduced from 1861ms to 1107ms). We tested on a 
default configuration because we could compare the 
results of code optimization to the default result. 
Reducing the number of instructions by 40.3% thereby 
reduces the time by 40.3% in single core architectures. 
This was a great start to the project, because it nearly 
reduces the computation times by half and we didn’t 
even improve the hardware yet. 
 
We were able to further reduce the number of 
computations by creating the variable a1, which 
replaces B[*b1][j] and eliminates more 
computations. The number of computations, for the 
small matrix configuration, was reduced even further 
to 16,951,049 instructions, decreasing the number of 
computations by 48.8%. 
 
After having optimized the code, we added 
multithreading capabilities that separated the matrix 
multiplications pretty evenly between the many 
threads. As suggested in the homework descriptions, 
we were able to have multiple cores working on a 
single matrix multiplication at a time. Each core 
computes a fraction of the resulting matrix 
independently, and each core computes the same 
amount of the resulting matrix and allows for the most 
optimal parallelization. The following diagram shows 
how the cores computed the matrix results: 
 

 
 

Initial Findings 
 
We began our experiments with initial trials to 
determine the effects of various configuration 
parameters.  These were not directed experiments; 
rather, educated trial and error from what we learned 
in class.  Because there were so many different 
hardware parameters, we attempted to narrow down 
the number of parameters so that we could experiment 
more thoroughly.  The discoveries we made in this 
trial-and-error phase were incorporated into all of our 
final designs: A, B, C, and D discussed in this report. 
This section lays out what we found during this initial 
trial phase. 
 
Core count 
 
We tested out our multithreaded software with a 
multi-core architecture consisting of 1, 2, 3, and 4 small 
cores.  All else being equal, increasing the core count 
improves performance because it allows for 
parallelization of instructions.  However, each 
additional core consumed a significant amount of 
power.   We had already noted that high frequency and 
out-of-order execution are both important for good 
performance, and maintaining a high core count ruled 
out the possibility of including these other 
improvements.  Therefore, we chose to proceed with 
two designs: one dual-core design, and one single-core 
design. 
 
Core selection 
 
We considered using an architecture consisting of a 
mix of different cores.  However, we found that our 
software would not be able to utilize the different 
cores to their full extent, which would require the 
program to create threads with different 
responsibilities.  Matrix multiplication is not easily 
split between different roles that can be executed by 
different threads.  Therefore, we chose to proceed with 
homogenous core architecture for the dual-core 
design. 

X 

a1 

a2 

a3 

Matrix 
B = 

a1 X B 

a2 X B 

a1 X B 
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Cache size 
 
We noted from report.pl printouts that the 
instruction L1 cache rarely has a miss rate greater than 
.5%.  Therefore, we chose to keep instruction L1 cache 
at the minimum size, 16384 bytes. We attempted to 
also keep data L1 cache at a minimum for the sake of 
conserving power.  However, this caused the data L1 
miss rate to exceed 1% at times, and caused a 
noticeable decrease in performance.  Therefore, we 
chose to use a data L1 cache size of 32768 going 
forward. 
 
L2 design 
 
With the L1 cache miss rates below 1%, there is little 
benefit from including an L2 cache in the design.  A 
multicore processor potentially benefits from having a 
shared L2 cache that allows cores to access data that 
other cores have recently accessed.  However, due to 
the way our program divides up matrices among 
threads, our cores are rarely looking at data that is 
from similar locations in the memory.  Therefore, we 
chose to not include any L2 cache in our designs going 
forward. 
 

Experiments 
 
We used these initial findings and theory learned from 
class to come up with two candidate, high-
performance designs—Design A, a base multi core 
design with an objective function of 159, and Design C, 
a single core design with an objective function of 132. 
 
Then, we ran experiments with these two candidate 
cores to find out the effects of parameters we were less 
familiar with.  The improvements were then applied to 
both of the candidate designs (Design A and C), which 
eventually morphed into the final designs Design B and 
Design D, where Design B became our best solution. 
 
In-order vs. out-of-order 
 
Based on what we learned in class, out-of-order issuing 
made a big difference in performance over in-order 
issuing.  This allows processes to issue instructions 
before or after they were initially intended, to 
eliminate stalls.  Therefore, we tested the an in-order 
configuration against an out-of-order configuration (on 
small matrices and using the default frequency of 100 
Mhz) and saw the following results: 
 

 power 
(W) 

simsmall 
time (ms) 

Single_InOrder.conf 1.848 1004.466 
Single_OutOrder.conf 3.776 179.301 

 
We were happily surprised to see that the out-of-order 
issuing decreased the time significantly at the small 
expense of adding about 2 watts to the power 
consumption. For such a small amount of additional 
power, there was a large gain in performance. 
 
For all tests that followed this, we chose to keep out-
of-order issuing. 
 
Frequency 
 
Next we looked at the frequencies of the in-order and 
out-of-order architectures. We learned from 
Homework 3 that increasing clock frequency is 
important for improving performance.  To determine 
how in-order and out-of-order architectures respond 
to changes in frequency, we gradually increased the 
frequencies of the in-order and out-of-order 
architectures until the frequency could no longer be 
increased (for the in-order architecture) or we 
surpassed the 20W allowance (for the out-of-order 
architecture). 
 
in-order power (W) simsmall time (ms) 
900MHz 3.884 111.674 
1000MHz 4.117 100.517 
1100MHz 4.351 91.388 
1300MHz 4.818 77.344 
1500MHz 5.288 67.045 
2000MHz 6.471 50.309 
2500MHz 6.821 46.863 
 
Once we reached a threshold of 2500 MHz, we saw 
minimal gains by increasing the clock frequency. As 
the clock frequency increased, the return on decreased 
time decreased. Now looking at the out-of-order 
architecture and increasing frequencies, we were only 
able to reach a maximum frequency of 1300MHz, 
which became Design C, before it surpassed the 20W 
maximum. But because instructions could be executed 
out of order, the overall time was much smaller: 
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out-of-order power (w) simsmall time (ms) 
900MHz 14.422 19.969 
1000MHz 15.728 17.978 
1100MHz 17.035 15.728 
1200MHz 18.334 14.989 
1300MHz* 19.63 13.841 

* Single_OutOrder_1300MHz.conf (Design C) 
 
Analyzing strictly the clock frequencies and whether 
or not the architecture supported out-of-order issuing, 
we were able bring the objective function to 132.367 
with just 1 core. Also, testing on medium and large 
matrices, we found this configuration to be scalable 
and always within the 20W budget. (See Design C in 
the appendix for more configuration details and 
performance). 
 
Because frequency has such a straightforward impact 
on the performance of a chip, in following design 
stages we chose to take draft designs and increase the 
frequency until we hit our 20W power budget. 
 
Associativity 
 
When we were running initial tests to arrive at Design 
A and Design C, we discovered that changing 
associativity had a large impact on how much power 
the chip consumed, which in turned influenced how 
fast we could clock the design.  As an additional effect, 
associativity also influences the L1 miss rates, which in 
turn influences how frequent the processor has to stall 
for memory access. 
 
This experiment was done using our dual core Design 
A, which is shown in the Appendix.  We set both 
instruction L1 and data L1 associativity to 1, and varied 
the two parameters find out how associativity would 
influence performance and power consumption: 
 
IL1 
assoc. 

DL1 
assoc. 

power 
(W) 

simsmall time 
(ms) 

1 1 46.041 11.729 
1 2 23.996 11.738 
1 4 19.905 11.738 
1 8 14.194 11.738 
1 16 16.293 11.738 

 

 
 
We find that changing data L1 associativity does not 
significantly change the simulation time, however, 
there are significant power savings as the associativity 
approaches 8.  We also noted that as the associativity 
increased, the cache miss rate of the data L1 decreased. 
 
Next, we examine whether or not changing the 
associativity for instruction L1 influences power and 
performance. 
 
IL1 
assoc. 

DL1 
assoc. 

Power 
(W) 

simsmall time 
(ms) 

1 8 14.194 11.738 
2 8 14.442 11.735 
4 8 15.111 11.734 
8 8 16.182 11.734 
16 8 16.721 11.734 

 

 
 
In contrast to data L1 associativity, increasing 
instruction L1 associativity yields no improvement in 
power consumption.  The instruction L1 miss rate was 
extremely low to begin with, and any potential increase 
in cache hit-rate was negligible. 
 
Changes to instruction cache have less impact than 
those on data cache because our program accesses the 
data cache far more frequently than the instruction 
cache.  Furthermore, because each core is accessing 
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different parts of a matrix in a short time span, it is 
likely that data recently accessed in cache will still be 
useful in the near future.  Hence, higher data L1 
associativity aids performance and power. 
 
Issue width 
 
In our initial tests, we had set the issue width of our 
processors to 2 because our understanding of ILP told 
us that increasing the issue width would increase the 
IPC of the processor.  However, we also noted that 
maintaining a high issue width incurred a large power 
cost.  We decided to investigate whether or not a large 
issue width is a worthwhile configuration. 
 
For this experiment, we took Design A, and augmented 
it to have the improved cache associativity we found in 
the previous section.  We set IL1 associativity to 1 and 
DL1 associativity to 8.  We varied the issue width of the 
processor: 
 
issue width power (W) simsmall time (ms) 

1 12.276 12.96 
2 14.194 11.738 
3 17.369 10.301 
4 20.685 9.84 

 

 
 
Increasing the issue width did increase the IPC, which 
is reflected in the decrease in simulation time as we 
increased the issue width.  However, this benefit 
tapered off as we increased issue width from 2 to 3, as 
other factors such as cache misses started holding back 
the IPC gains. 
 
The graph shows that increasing the issue width 
beyond 2 consumes a lot of power. Therefore, we 
decided that it is not worth the extra power to increase 
the issue width beyond two for future designs. 
 

It is worth noting that this might only be true for small 
cores.  With only one set of execution units, the small 
core likely does not benefit from larger issue widths as 
larger cores would.  For example, we used an issue 
width of 2 to improve design C, which has a mid-sized 
core. 
 
Cache block size 
 
After experimenting with the associativity of the 
caches, we realized that the cache designs have a much 
larger impact on performance and power than we 
initially thought. 
 
While none of the three simulations need large caches 
to execute with low cache miss rates, the arrangement 
of the caches themselves has a large influence on the 
power consumption of the chip. 
 
Again, we took Design A with the augmented IL1 and 
DL1 associativity, and varied the cache block size: 
 
block size access 

time (cc) 
 timing (ms) power (W) 

8 1  6.085 46.833 
16 1  6.048 30.267 
32 2  6.476 18.472 
64 2  6.466 15.866 
128 3  6.831 16.444 
256   CACTI fails*  

* A cache block size of 256 decreases the cache index 
below 32 
 

 
 
We found that the power consumption (red line in the 
previous graph) improves significantly as the cache 
block size nears 64 bytes. 
 
This makes sense when taking into consideration how 
the program uses memory.  The processor performs 
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matrix multiplication on a number that is not already 
in cache, it loads a block of numbers, which contains 
the numbers that the processor will need in 
subsequent cycles.  Therefore, increasing the block size 
decreases the cache miss rate. 
 
Single core testing with multi core updates 
 
With more confirmation that higher frequencies are 
better, we looked into other combinations of hardware. 
From the multi-core architecture testing, we 
discovered that the results were better with a higher 
issue width. 
 
Furthermore, prior testing revealed that modifying the 
data cache associativity to 8 (previously 1 or 2) 
significantly decreased the overall power consumption. 
With a much less power consumption, we could now 
incorporate a larger issue width and still use an 
extremely high clock frequency.  We continued testing 
the single-core architecture with a medium-sized core. 
 
This next configuration became Design C.  It has a 
single core, 3000MHz frequency, issue width of 2, data 
associativity of 8, and instruction associativity of 1, and 
we achieved an objective function 259.527.   The 
configuration and performance analysis of this design, 
Design C, can be found in the Appendix. 
 

Conclusions 
 
This section discusses any general observations 
concerning tradeoffs of each of the hardware 
components available for system configuration. 
 
 Effects on 

performance 
Power 
consumption 

In-order vs. 
out-of-
order cores 

Out-of-order cores 
have a significant 
performance 
improvement over 
in-order cores 
(Tomasulo’s) 

Does increase 
power slightly, 
but time gains 
outweigh power 
gains. 

Core size Mid-core showed 
improvements for 
single-core designs, 
but too power 
hungry for multi-
core designs. 

Bigger cores use 
significantly 
more power 

Core count More cores 
increases 
parallelization, but 
requires more 

It’s directly 
related to the 
number of cores 

power 
Clock speed Extremely 

important. Speed 
gains diminish as 
clock speed 
increases to very 
large numbers. 

Increases almost 
linearly with 
clock speed. 

Issue width Improves 
performance 
noticeably, allows 
for multiple 
instructions issued 
at once 

High power 
consumption, 
therefore 
difficult include 
in multi-core 
architectures. 

L2 Negligible benefits 
because cores don’t 
have much parallel 
data access. 

Power hungry. 

Instruction 
L1 

Minimum L1 is 
sufficient through 
empirical testing, 
cache miss rate is 
low. Associativity 
should be 1 

Minimal impact. 

Data L1 Small L1 is bad 
because it 
significantly 
increases miss rate. 
Associativity is 
most efficient at 8 

Size has minimal 
impact on power.  
Associativity has 
significant 
impact on power. 
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Appendix 
Design A—Multi Core Base 
Configuration: 
Core count 2 
Core type Small out-of-order cores 
Issue width 2 
Frequency 740 MHz 
  
IL1 Cache Size 16384 
IL1 Associativity 1 
IL1 Access Time (ns) 0.263321980197 
IL1 Access Time (cc) 1 
  
DL1 Cache Size 32768 
DL1 Associativity 4 
DL1 Access Time (ns) 0.464963823447 
DL1 Access Time (cc) 1 
  
Cache Block Size 32 
Performance: 
 Power Time Speedup 

over base 
simsmall 19.905W 11.738ms 158.6 
simmid 19.767W 152.73ms 160.0 
simlarge 19.761W 702.364ms 160.5 
Objective 
Function 

  159.9 

 

Design C—Single Core 
Configuration: 
Core count 1 
Core type Mid out-of-order core 
Issue width 1 
Frequency 1.3 GHz 
  
IL1 Cache Size 32769 
IL1 Associativity 2 
IL1 Access Time (ns) 0.433806432652 
IL1 Access Time (cc) 1 
  
DL1 Cache Size 32768 
DL1 Associativity 2 
DL1 Access Time (ns) 0. 433806432652 
DL1 Access Time (cc) 1 
  
Cache Block Size 32 
Performance: 
 Power Time Speedup 

over base 
simsmall 19.63W 13.841ms 134.51 
simmid 19.155W 184.354ms 132.54 
simlarge 18.923W 859.628ms 131.147 
Objective 
Function 

  132.376 
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Design D—Single Core Final 
Configuration  
Core count 1 
Core type Mid out-of-order core 
Issue width 2 
Frequency 3.0 GHz 
  
IL1 Cache Size 16384 
IL1 Associativity 1 
IL1 Access Time (ns) 0.263321980197 
IL1 Access Time (cc) 1 
  
DL1 Cache Size 32768 
DL1 Associativity 8 
DL1 Access Time (ns) 0.577057051912 
DL1 Access Time (cc) 1 
  
Cache Block Size 32 
Performance: 
 Power Time Speedup 

over base 
simsmall 17.619W 6.889ms 270.25 
simmid 16.874W 94.178ms 259.45 
simlarge 16.558W 443.42ms 254.246 
Objective 
Function 

  259.53 

 


