
 1

Final Project
Documentation
CSEE4824 Computer Architecture

John Graham
Yipeng Huang

In this report, we will present the software
optimizations, hardware configurations, performance,
and power analysis of four processor designs. The
following section shows the configuration and results
of our best hardware design (Design B), with an
objective function of 351.4. From there, we will
describe the steps we took to eventually achieve this
value.

You may find our other configurations and
corresponding performance tables (Designs A, C, D) at
the end of the report, in the Appendix. We will be
referring to those designs throughout the report.

Simulation Results

Design B—Multi Core Final
Configuration:
Core count 2
Core type Small out-of-order cores
Issue width 1
Frequency 2.1 GHz

IL1 Cache Size 16384
IL1 Associativity 1
IL1 Access Time (ns) 0.326370006889
IL1 Access Time (cc) 1

DL1 Cache Size 32768
DL1 Associativity 8
DL1 Access Time (ns) 1.64704053756
DL1 Access Time (cc) 4

Cache Block Size 128

Performance:
 Power Time Speedup

over base
simsmall 19.119W 5.277ms 352.8
simmid 18.965W 68.836ms 355.0
simlarge 18.596W 324.883ms 347.0
Objective
Function

 351.4

Software Optimizations

The final project called for two important methods in
optimizing the matrix multiplication program:
optimizing code and optimizing hardware. Before even
running trials, we analyzed the code to determine
where the number of computations could be reduced
and where code could be made more efficient.

We started by looking at the brute force algorithm that
was supplied to us, shown below. Looking at the two
lines that are in bold, we determined that there are a
lot of extraneous calculations in this brute force
algorithm.

for(j=0; j<a[0]; j++)
{
 for(k=0; k<a[*b2+1]; k++)
 {
 B[*b2][j][k] = 0;
 for(l=0; l<a[*b2]; l++)
 {

B[*b2][j][k] +=
B[*b1][j][l] *
A[*b2][l][k];

 }
 }
}

For every multiplication in the algorithm, this brute
force method accesses a point in memory relative to a
3-dimensional array. The second line that is bolded is a
good example of why this computation is not optimal.
First of all, modifying B[*b2][j][k] for every
iteration of l requires a computation of *b2, j, and k
such that the memory address is relative to the
double ***B. This alone uses several additions and
multiplications to compute the address current address
in memory. However, it’s interesting to note that in the
innermost for loop, the address of B[*b2][j][k]
never changes because the loop is iterating over l, but
the address in memory is being recalculated every time.
Therefore, this is an extraneous calculation and can be
eliminated. An optimized version of the brute force
algorithm is displayed below.

for(j=0; j<a[0]; j++)
{
 for(k=0; k<a[*b2+1]; k++)
 {
 double tempNum = 0;
 double a1 = B[*b1][j];
 for(l=0; l<a[*b2]; l++)
 {

 2

tempNum += a1[l]
* A[*b2][l][k];

 }
 B[*b2][j][k] = tempNum;
 }
}

We added a temporary variable that keeps track of
result values in the matrix. This allows for the removal
of the calculation in the for loop over l that caused a
lot of unnecessary calculations.

After running the new code with the default
“NoL2SinglePower.conf” file, we were able to reduce
the number of computations significantly using
tempNum, which eliminates the 3-dimensional matrix
calculations in every iteration of l, and plugs it into the
matrix at the end of the computations. It reduced the
number of instructions from 32,142,898 instructions to
19,204,179, a reduction by 40.3% of the number of
computations (time on a small matrix, for example,
reduced from 1861ms to 1107ms). We tested on a
default configuration because we could compare the
results of code optimization to the default result.
Reducing the number of instructions by 40.3% thereby
reduces the time by 40.3% in single core architectures.
This was a great start to the project, because it nearly
reduces the computation times by half and we didn’t
even improve the hardware yet.

We were able to further reduce the number of
computations by creating the variable a1, which
replaces B[*b1][j] and eliminates more
computations. The number of computations, for the
small matrix configuration, was reduced even further
to 16,951,049 instructions, decreasing the number of
computations by 48.8%.

After having optimized the code, we added
multithreading capabilities that separated the matrix
multiplications pretty evenly between the many
threads. As suggested in the homework descriptions,
we were able to have multiple cores working on a
single matrix multiplication at a time. Each core
computes a fraction of the resulting matrix
independently, and each core computes the same
amount of the resulting matrix and allows for the most
optimal parallelization. The following diagram shows
how the cores computed the matrix results:

Initial Findings

We began our experiments with initial trials to
determine the effects of various configuration
parameters. These were not directed experiments;
rather, educated trial and error from what we learned
in class. Because there were so many different
hardware parameters, we attempted to narrow down
the number of parameters so that we could experiment
more thoroughly. The discoveries we made in this
trial-and-error phase were incorporated into all of our
final designs: A, B, C, and D discussed in this report.
This section lays out what we found during this initial
trial phase.

Core count

We tested out our multithreaded software with a
multi-core architecture consisting of 1, 2, 3, and 4 small
cores. All else being equal, increasing the core count
improves performance because it allows for
parallelization of instructions. However, each
additional core consumed a significant amount of
power. We had already noted that high frequency and
out-of-order execution are both important for good
performance, and maintaining a high core count ruled
out the possibility of including these other
improvements. Therefore, we chose to proceed with
two designs: one dual-core design, and one single-core
design.

Core selection

We considered using an architecture consisting of a
mix of different cores. However, we found that our
software would not be able to utilize the different
cores to their full extent, which would require the
program to create threads with different
responsibilities. Matrix multiplication is not easily
split between different roles that can be executed by
different threads. Therefore, we chose to proceed with
homogenous core architecture for the dual-core
design.

X

a1

a2

a3

Matrix
B =

a1 X B

a2 X B

a1 X B

 3

Cache size

We noted from report.pl printouts that the
instruction L1 cache rarely has a miss rate greater than
.5%. Therefore, we chose to keep instruction L1 cache
at the minimum size, 16384 bytes. We attempted to
also keep data L1 cache at a minimum for the sake of
conserving power. However, this caused the data L1
miss rate to exceed 1% at times, and caused a
noticeable decrease in performance. Therefore, we
chose to use a data L1 cache size of 32768 going
forward.

L2 design

With the L1 cache miss rates below 1%, there is little
benefit from including an L2 cache in the design. A
multicore processor potentially benefits from having a
shared L2 cache that allows cores to access data that
other cores have recently accessed. However, due to
the way our program divides up matrices among
threads, our cores are rarely looking at data that is
from similar locations in the memory. Therefore, we
chose to not include any L2 cache in our designs going
forward.

Experiments

We used these initial findings and theory learned from
class to come up with two candidate, high-
performance designs—Design A, a base multi core
design with an objective function of 159, and Design C,
a single core design with an objective function of 132.

Then, we ran experiments with these two candidate
cores to find out the effects of parameters we were less
familiar with. The improvements were then applied to
both of the candidate designs (Design A and C), which
eventually morphed into the final designs Design B and
Design D, where Design B became our best solution.

In-order vs. out-of-order

Based on what we learned in class, out-of-order issuing
made a big difference in performance over in-order
issuing. This allows processes to issue instructions
before or after they were initially intended, to
eliminate stalls. Therefore, we tested the an in-order
configuration against an out-of-order configuration (on
small matrices and using the default frequency of 100
Mhz) and saw the following results:

 power
(W)

simsmall
time (ms)

Single_InOrder.conf 1.848 1004.466
Single_OutOrder.conf 3.776 179.301

We were happily surprised to see that the out-of-order
issuing decreased the time significantly at the small
expense of adding about 2 watts to the power
consumption. For such a small amount of additional
power, there was a large gain in performance.

For all tests that followed this, we chose to keep out-
of-order issuing.

Frequency

Next we looked at the frequencies of the in-order and
out-of-order architectures. We learned from
Homework 3 that increasing clock frequency is
important for improving performance. To determine
how in-order and out-of-order architectures respond
to changes in frequency, we gradually increased the
frequencies of the in-order and out-of-order
architectures until the frequency could no longer be
increased (for the in-order architecture) or we
surpassed the 20W allowance (for the out-of-order
architecture).

in-order power (W) simsmall time (ms)
900MHz 3.884 111.674
1000MHz 4.117 100.517
1100MHz 4.351 91.388
1300MHz 4.818 77.344
1500MHz 5.288 67.045
2000MHz 6.471 50.309
2500MHz 6.821 46.863

Once we reached a threshold of 2500 MHz, we saw
minimal gains by increasing the clock frequency. As
the clock frequency increased, the return on decreased
time decreased. Now looking at the out-of-order
architecture and increasing frequencies, we were only
able to reach a maximum frequency of 1300MHz,
which became Design C, before it surpassed the 20W
maximum. But because instructions could be executed
out of order, the overall time was much smaller:

 4

out-of-order power (w) simsmall time (ms)
900MHz 14.422 19.969
1000MHz 15.728 17.978
1100MHz 17.035 15.728
1200MHz 18.334 14.989
1300MHz* 19.63 13.841

* Single_OutOrder_1300MHz.conf (Design C)

Analyzing strictly the clock frequencies and whether
or not the architecture supported out-of-order issuing,
we were able bring the objective function to 132.367
with just 1 core. Also, testing on medium and large
matrices, we found this configuration to be scalable
and always within the 20W budget. (See Design C in
the appendix for more configuration details and
performance).

Because frequency has such a straightforward impact
on the performance of a chip, in following design
stages we chose to take draft designs and increase the
frequency until we hit our 20W power budget.

Associativity

When we were running initial tests to arrive at Design
A and Design C, we discovered that changing
associativity had a large impact on how much power
the chip consumed, which in turned influenced how
fast we could clock the design. As an additional effect,
associativity also influences the L1 miss rates, which in
turn influences how frequent the processor has to stall
for memory access.

This experiment was done using our dual core Design
A, which is shown in the Appendix. We set both
instruction L1 and data L1 associativity to 1, and varied
the two parameters find out how associativity would
influence performance and power consumption:

IL1
assoc.

DL1
assoc.

power
(W)

simsmall time
(ms)

1 1 46.041 11.729
1 2 23.996 11.738
1 4 19.905 11.738
1 8 14.194 11.738
1 16 16.293 11.738

We find that changing data L1 associativity does not
significantly change the simulation time, however,
there are significant power savings as the associativity
approaches 8. We also noted that as the associativity
increased, the cache miss rate of the data L1 decreased.

Next, we examine whether or not changing the
associativity for instruction L1 influences power and
performance.

IL1
assoc.

DL1
assoc.

Power
(W)

simsmall time
(ms)

1 8 14.194 11.738
2 8 14.442 11.735
4 8 15.111 11.734
8 8 16.182 11.734
16 8 16.721 11.734

In contrast to data L1 associativity, increasing
instruction L1 associativity yields no improvement in
power consumption. The instruction L1 miss rate was
extremely low to begin with, and any potential increase
in cache hit-rate was negligible.

Changes to instruction cache have less impact than
those on data cache because our program accesses the
data cache far more frequently than the instruction
cache. Furthermore, because each core is accessing

0

20

40

60

1 2 4 8 16
Data L1 Associativity

Power (W)

simsmall
Time (ms)

0	

5	

10	

15	

20	

1	 2	 4	 8	 16	
Instruction	 L1	 Associativity	

Power	 (W)	

simsmall	
Time	 (ms)	

 5

different parts of a matrix in a short time span, it is
likely that data recently accessed in cache will still be
useful in the near future. Hence, higher data L1
associativity aids performance and power.

Issue width

In our initial tests, we had set the issue width of our
processors to 2 because our understanding of ILP told
us that increasing the issue width would increase the
IPC of the processor. However, we also noted that
maintaining a high issue width incurred a large power
cost. We decided to investigate whether or not a large
issue width is a worthwhile configuration.

For this experiment, we took Design A, and augmented
it to have the improved cache associativity we found in
the previous section. We set IL1 associativity to 1 and
DL1 associativity to 8. We varied the issue width of the
processor:

issue width power (W) simsmall time (ms)

1 12.276 12.96
2 14.194 11.738
3 17.369 10.301
4 20.685 9.84

Increasing the issue width did increase the IPC, which
is reflected in the decrease in simulation time as we
increased the issue width. However, this benefit
tapered off as we increased issue width from 2 to 3, as
other factors such as cache misses started holding back
the IPC gains.

The graph shows that increasing the issue width
beyond 2 consumes a lot of power. Therefore, we
decided that it is not worth the extra power to increase
the issue width beyond two for future designs.

It is worth noting that this might only be true for small
cores. With only one set of execution units, the small
core likely does not benefit from larger issue widths as
larger cores would. For example, we used an issue
width of 2 to improve design C, which has a mid-sized
core.

Cache block size

After experimenting with the associativity of the
caches, we realized that the cache designs have a much
larger impact on performance and power than we
initially thought.

While none of the three simulations need large caches
to execute with low cache miss rates, the arrangement
of the caches themselves has a large influence on the
power consumption of the chip.

Again, we took Design A with the augmented IL1 and
DL1 associativity, and varied the cache block size:

block size access

time (cc)
 timing (ms) power (W)

8 1 6.085 46.833
16 1 6.048 30.267
32 2 6.476 18.472
64 2 6.466 15.866
128 3 6.831 16.444
256 CACTI fails*

* A cache block size of 256 decreases the cache index
below 32

We found that the power consumption (red line in the
previous graph) improves significantly as the cache
block size nears 64 bytes.

This makes sense when taking into consideration how
the program uses memory. The processor performs

0	
5	
10	
15	
20	
25	

1	 2	 3	 4	
Issue	 Width	

Power	 (W)	

simsmall	
Time	 (ms)	

0	
10	
20	
30	
40	
50	

8	 16	 32	 64	 128	
Cache	 Block	 Size	 (Bytes)	

Timing	 (ms)	

Power	 (W)	

 6

matrix multiplication on a number that is not already
in cache, it loads a block of numbers, which contains
the numbers that the processor will need in
subsequent cycles. Therefore, increasing the block size
decreases the cache miss rate.

Single core testing with multi core updates

With more confirmation that higher frequencies are
better, we looked into other combinations of hardware.
From the multi-core architecture testing, we
discovered that the results were better with a higher
issue width.

Furthermore, prior testing revealed that modifying the
data cache associativity to 8 (previously 1 or 2)
significantly decreased the overall power consumption.
With a much less power consumption, we could now
incorporate a larger issue width and still use an
extremely high clock frequency. We continued testing
the single-core architecture with a medium-sized core.

This next configuration became Design C. It has a
single core, 3000MHz frequency, issue width of 2, data
associativity of 8, and instruction associativity of 1, and
we achieved an objective function 259.527. The
configuration and performance analysis of this design,
Design C, can be found in the Appendix.

Conclusions

This section discusses any general observations
concerning tradeoffs of each of the hardware
components available for system configuration.

 Effects on

performance
Power
consumption

In-order vs.
out-of-
order cores

Out-of-order cores
have a significant
performance
improvement over
in-order cores
(Tomasulo’s)

Does increase
power slightly,
but time gains
outweigh power
gains.

Core size Mid-core showed
improvements for
single-core designs,
but too power
hungry for multi-
core designs.

Bigger cores use
significantly
more power

Core count More cores
increases
parallelization, but
requires more

It’s directly
related to the
number of cores

power
Clock speed Extremely

important. Speed
gains diminish as
clock speed
increases to very
large numbers.

Increases almost
linearly with
clock speed.

Issue width Improves
performance
noticeably, allows
for multiple
instructions issued
at once

High power
consumption,
therefore
difficult include
in multi-core
architectures.

L2 Negligible benefits
because cores don’t
have much parallel
data access.

Power hungry.

Instruction
L1

Minimum L1 is
sufficient through
empirical testing,
cache miss rate is
low. Associativity
should be 1

Minimal impact.

Data L1 Small L1 is bad
because it
significantly
increases miss rate.
Associativity is
most efficient at 8

Size has minimal
impact on power.
Associativity has
significant
impact on power.

 7

Appendix
Design A—Multi Core Base
Configuration:
Core count 2
Core type Small out-of-order cores
Issue width 2
Frequency 740 MHz

IL1 Cache Size 16384
IL1 Associativity 1
IL1 Access Time (ns) 0.263321980197
IL1 Access Time (cc) 1

DL1 Cache Size 32768
DL1 Associativity 4
DL1 Access Time (ns) 0.464963823447
DL1 Access Time (cc) 1

Cache Block Size 32
Performance:
 Power Time Speedup

over base
simsmall 19.905W 11.738ms 158.6
simmid 19.767W 152.73ms 160.0
simlarge 19.761W 702.364ms 160.5
Objective
Function

 159.9

Design C—Single Core
Configuration:
Core count 1
Core type Mid out-of-order core
Issue width 1
Frequency 1.3 GHz

IL1 Cache Size 32769
IL1 Associativity 2
IL1 Access Time (ns) 0.433806432652
IL1 Access Time (cc) 1

DL1 Cache Size 32768
DL1 Associativity 2
DL1 Access Time (ns) 0. 433806432652
DL1 Access Time (cc) 1

Cache Block Size 32
Performance:
 Power Time Speedup

over base
simsmall 19.63W 13.841ms 134.51
simmid 19.155W 184.354ms 132.54
simlarge 18.923W 859.628ms 131.147
Objective
Function

 132.376

 8

Design D—Single Core Final
Configuration
Core count 1
Core type Mid out-of-order core
Issue width 2
Frequency 3.0 GHz

IL1 Cache Size 16384
IL1 Associativity 1
IL1 Access Time (ns) 0.263321980197
IL1 Access Time (cc) 1

DL1 Cache Size 32768
DL1 Associativity 8
DL1 Access Time (ns) 0.577057051912
DL1 Access Time (cc) 1

Cache Block Size 32
Performance:
 Power Time Speedup

over base
simsmall 17.619W 6.889ms 270.25
simmid 16.874W 94.178ms 259.45
simlarge 16.558W 443.42ms 254.246
Objective
Function

 259.53

