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Our 2017 MICRO paper1 explores architectural ideas 

that allow us to successfully use a prototyped analog accelera-
tor, here in the context of scientific computing. We use the ap-
proximate solution from an analog accelerator to help a precise 
digital nonlinear equation solver running on a GPU. For larger, 
more nonlinear problems, the hybrid analog-digital solver has a 
performance improvement of 5.7× and energy savings of 11.6×, 
relative to a GPU without the help of an analog accelerator. 

The favorable findings contrast with our prior work2 
which found analog accelerators would have limited benefits in 
solving linear problems, due to prohibitively high analog sili-
con area costs and due to stiff competition from efficient digital 
computer algorithms for linear algebra. Here in this year’s pa-
per, analog acceleration redeemed itself in nonlinear problems, 
which pose no special challenge in analog but are tricky in digi-
tal because the prototypical digital algorithms for nonlinear 
equations are unreliable. 

The difference in how digital linear solvers vs. digital 
nonlinear solvers spend computation time is a key factor why 
analog acceleration had limited impact in helping with linear 
equations, while significantly helping with nonlinear problems. 
Digital linear solvers give the most significant digits of the so-
lution quickly but take time to give the least significant digits, 
and unfortunately analog acceleration cannot help to give pre-
cise solutions. On the other hand, digital nonlinear solvers have 
a hard time getting a rough-guess solution but polishing a good 
guess to high precision is cheap. A hybrid analog-digital system 
combines the analog solver for cheap approximate solutions and 
the digital solver to obtain high precision. 

An analog accelerator has a unique advantage in solv-
ing nonlinear equations because it works in continuous time, 
without steps. As a result, analog accelerators always have up-
to-date estimates of nonlinear functions and derivatives. That 
contrasts with digital, discrete-time systems which must pretend 
the problem is linear at each step. 

In the evaluation of the approach, we discuss tradeoffs 
concerning analog accuracy and precision, and how we can di-
vide and conquer large problems so subproblems can fit in the 
analog accelerator. Furthermore, we discuss how to increase the 
breadth and depth of workloads suitable for analog accelerators. 
Using the key strengths of an analog model of computing may 
																																																								
1  Y. Huang, N. Guo, M. Seok, Y. Tsividis, K. Mandli, and S. Sethu-
madhavan, “Hybrid analog-digital solution of nonlinear partial differ-
ential equations,” in Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-50 '17), pp. 665-
678, 2017. 
2 Y. Huang, N. Guo, M. Seok, Y. Tsividis, and S. Sethumadhavan, 
"Evaluation of an analog accelerator for linear algebra," in Proceedings 
of the 43rd International Symposium on Computer Architecture (ISCA 
'16), pp. 570-582, 2016. 

be one way to deliver performance and efficiency using existing 
integrated circuit technology in the post-Moore’s law era. 
 
Problem area: Solving nonlinear partial differential equations 
(PDEs) are an increasingly important workload as they give 
natural and accurate models for the physical world. Further-
more, nonlinear PDEs are increasingly useful in systems with 
limited energy budgets, for applications such as optimal control 
and fluid dynamics. For example, a mobile robot capable of 
solving these types of equations would be able to make more 
informed and optimal decisions navigating the physical world. 

We did a thorough survey of nonlinear PDE types, and 
decided in this paper to focus on solving the canonical 2D vis-
cous Burgers’ equation. We chose the Burgers’ equation be-
cause it is a core part of the important Navier-Stokes equations 
for fluid dynamics. The Burgers’ equation has a single parame-
ter which controls the character of the PDE, and serves to con-
trol how nonlinear the problems are in our experiments. 

We also studied PDE solution methods, and concluded 
most solvers distilled the problem to solving nonlinear systems 
of algebraic equations. Our workload characterization of non-
linear PDE solvers confirms solving nonlinear algebraic equa-
tions is the dominant kernel. Therefore, we looked for a way to 
solve nonlinear algebraic equations in a hybrid analog-digital 
solver system, which would support many nonlinear PDE solv-
ers while needing little reprogramming. 
 
How it works: To solve nonlinear equations in the analog ac-
celerator, we studied how modern digital computers solve non-
linear equations using algorithms. The prototypical digital nu-
merical method for nonlinear equations is the Newton method, 
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Figure 1 Analog accelerator circuit for solving an ODE, correspond-
ing to a continuous version of Newton's method for solving nonlinear 
equations. 
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which is an iterative method which makes successive guesses at 
the solution vector with decreasing error until it converges. 

In practice, the Newton method in a digital computer 
does not always give a correct result, and needs fine tuning of 
the algorithm in two aspects. First, the choice of the iterative 
method’s step size for updating the guess is important, as the 
algorithm needs to often reevaluate the nonlinear function and 
its derivative. Second, the initial guess to the algorithm needs to 
be close to the correct solution or else the algorithm does not 
converge. 

Doing the Newton method in continuous-time on an 
analog accelerator has unique advantages. First, the algorithm 
always has an up-to-date evaluation of the nonlinear function 
and its derivative, and since the algorithm runs in continuous 
time, there is no problem in selecting a step size. Second, we 
show in the paper an improvement to the basic Newton’s meth-
od called homotopy continuation which allows the analog ac-
celerator to select initial guesses more easily. 

Concretely, we do the Newton method in continuous 
time in an analog accelerator by shrinking the algorithm step 
sizes until it is an ordinary differential equation (ODE). The 
analog accelerator solves this ODE, using a circuit setup shown 
in Figure 1. Integrators at the left side of the diagram store the 
guess of the solution vector. The integrators feed the guesses to 
analog subcircuits that multiply and sum the values, to evaluate 
the nonlinear function and its derivative. Then, the analog ac-
celerator solves a linear algebra equation to approximate the 
correction term according to the Newton method. The integra-
tors take the correction terms as inputs to update the present 
guess. To use the analog solver, we charge the integrators to an 
initial guess. Then, we release the integrators. The analog accel-
erator solves the Newton method ODE in continuous time until 
the integrator values are steady, at which point analog-to-digital 
converters read out the solution. 

 
Hybrid analog-digital system: Once we set up a way to give 
approximate solutions to nonlinear systems of equations using 
an analog accelerator, we had to evaluate its usefulness in work-
loads that a conventional digital computer would handle. The 
requirements for a hybrid analog-digital approach include high 
accuracy and precision in the solution and the ability to handle 
large problem sizes. 

To get high accuracy solutions, we use the analog ac-
celerator in an analog-digital solver system where approximate 
and low-precision analog solutions are good initial seeds for a 
digital solver. This scheme is fruitful because a naïve Newton 
method solver with a poor initial guess spends most of its itera-
tions trying to find the general area of the correct solution. The 
results in our paper confirm a digital solver incurs higher time 
costs as a problem becomes more nonlinear due to this initial 
search phase. On the other hand, an analog approximate solu-
tion allows the hybrid system to fast forward through this phase. 
Once the hybrid system is in the general area of the solution, the 
digital solver quickly refines the solution to high precision. The 
result is the hybrid system solves increasingly nonlinear prob-
lems with no significant increase in solution time. 

To handle large problem sizes, the digital solver di-
vides nonlinear PDE problems into nonlinear systems of equa-
tions problems that can fit in the analog accelerator. Since the 
analog accelerator focuses only on solving nonlinear systems of 
equations, the existing PDE space and time discretization tech-

niques stay the same, reducing the amount of reprogramming 
needed to use analog acceleration. If the nonlinear systems of 
equations are still too big to fit in the analog accelerator, we use 
red-black nonlinear Gauss-Seidel to further split the problems. 

In our paper, we make projections on the performance, 
power, and area of a tiled-out analog accelerator, up to the point 
where the analog accelerator size matches that of the largest 
commercial digital chips. Our comparisons and results assume 
that as the largest possible analog accelerator. We speculate that 
given the low power consumption and signal fault tolerance of 
analog chips, it is possible to build larger analog chips and stack 
them in ways that are impossible with digital chips. 
 
Physical prototype implementation: We tested our ideas on a 
two-chip system of physically prototyped analog accelerators. 
The chips are tiled versions of the programmable microarchitec-
ture from our group’s prior work3, with microarchitecture 
changes to improve calibration and allow multi-chip scalability. 
The connectivity for analog signals between chips and between 
tiles is sparse to match the sparse connectivity of PDEs. Within 
each tile, the connectivity between analog components is all-to-
all to create a variety of nonlinear polynomial functions and 
their derivatives, giving support for different nonlinear PDEs. 

The two-chip system allowed us to test 2D Burgers’ 
equations on a 2×2 grid. We then extrapolated the solution 
times for analog chips capable of solving larger problems. 
When an analog accelerator chip capable of solving 16×16 2D 
Burgers’ equations generates approximate solutions to help a 
GPU running the Newton method, the solution time of the GPU 
decreases by 5.7× and the energy consumption decreases by 
11.6×. These savings are significant since they are the inner-
most and most intensive kernels of nonlinear PDE solvers.  

																																																								
3 N. Guo et al., "Energy-Efficient Hybrid Analog/Digital Approximate 
Computation in Continuous Time," in IEEE Journal of Solid-State 
Circuits, vol. 51, no. 7, pp. 1514-1524, July 2016. 
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Figure 2 Schematic of a prototyped 4mm×4mm tiled analog accelera-
tor with enhanced calibration for analog components, and designed for 
multi-chip scalability. 
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Long-term impact 
 
Nonlinear equations are increasingly important: Scientific 
computing workloads increasingly rely on nonlinear equations 
to accurately model the real world. A recent informal survey of 
applied math literature4 found Newton methods for nonlinear 
equations to be the most mentioned algorithm, surprisingly top-
ping other numerical stalwarts like matrix factorization, eigena-
nalysis, Monte-Carlo methods, and FFT. For comparison, an 
earlier ranking of algorithms from the turn of the century5 did 
not mention nonlinear problems at all. 

The importance of Newton methods may surprise 
computer architects, since scientific computing workload pro-
files show sparse linear algebra is by far the most important 
kernel. Accordingly, we tune architectures such as GPUs for 
linear algebra. The reality is scientific computing workloads 
oftentimes call linear algebra subroutines from nonlinear equa-
tion solvers. Therefore, improvements for nonlinear solvers 
would reduce the number of calls to linear algebra solvers alto-
gether. Unfortunately, the software behavior of nonlinear solv-
ers is less regular, making it difficult to devise conventional 
accelerators for nonlinear problems. 
 
Nonlinear is analog killer app: This paper shows analog ac-
celeration has unique advantages in tackling nonlinear prob-
lems. That is because the analog accelerator works in continu-
ous time, so that nonlinear functions and derivatives are contin-
uously reevaluated. In comparison, discrete time digital com-
puters must pretend the problem is linear at each time step. If 
this linear assumption causes problems, the digital computer 
must invest more iterations and computation time until the line-
ar approximation is good enough. Using an analog accelerator 
to solve the same nonlinear problem sidesteps these problems 
because the nonlinear behavior of the analog circuit better 
matches the nonlinear problem description. 
 
How to do more problems types in analog accelerators: This 
paper paves the way to finding more problems for the analog 
accelerator. We do so by converting iterative numerical meth-
ods into ODEs, which we then solve in the analog accelerator. 
In our work, we give three examples of continuous ODEs that 
solve numerical problems: continuous gradient descent for line-
ar algebra, along with continuous Newton’s method and ho-
motopy continuation, both for nonlinear algebra. These exam-
ples give us clues on how to find more problems for analog ac-
celerators in the future. For example, iterative numerical meth-
ods for important problems such as eigenanalysis and linear 
programming all have continuous time versions. 

Doing iterative numerical methods in an analog accel-
erator has three advantages. First, analog accelerators work 
nicely in hybrid analog-digital architectures for iterative meth-
ods by giving cheap approximate solutions which a convention-
al digital computer can then refine. That is possible because 
iterative numerical methods all work by giving progressively 
more correct guesses for the problem solution. Second, analog 
accelerators work in continuous time, without discrete steps, 

																																																								
4 https://nickhigham.wordpress.com/2016/03/29/the-top-10-algorithms-
in-applied-mathematics/ 
5 B.A. Cipra, "The Best of the 20th Century: Editors Name Top 10 
Algorithms," in SIAM News, vol. 33, no. 4, May 2000. 

avoiding the choice of step sizes, which control how fast itera-
tive numerical methods updates solution guesses. The choice of 
these step sizes is often difficult and needs fine tuning. Third, 
when we use analog accelerators to solve iterative numerical 
methods, the solution output of the analog accelerator is the 
final, converged output. Because the output is steady, we can 
sample the solution with high precision, making it easier to 
connect the analog accelerator with a digital computer. 
 
How to do more work in an analog accelerator: This paper 
shows how we can make the analog accelerator do more work, 
so the ratio of analog computation vs. analog / digital conver-
sion is higher, making analog acceleration more worthwhile. 
The trick is to have an analog accelerator equivalent of inner 
loops. For example, we invoked an analog inner loop for linear 
algebra inside the analog Newton method solver. The Newton 
method solver is itself an inner loop for homotopy continuation. 
We implement these inner loops by building subcircuits which 
converge faster than the overall circuit. Using this trick, we can 
nest other types of iterative numerical methods, in the same way 
digital algorithms compose different subroutines. 
 
Broader view: As we enter the post-Moore’s law era of compu-
ting, unconventional architectures will offer specialized models 
of computation that uniquely support specific problem types. 
Two prominent examples are using deep neural networks to 
support pattern recognition, and using quantum computers for 
factorization. In our paper we show another specialized, uncon-
ventional architecture is to use analog accelerators to solve non-
linear problems. As recent computer architecture conference 
programs show, these unconventional architectures are now 
commercially relevant. 

Computer architecture researchers will discover other 
important models of computation in the future. This paper is an 
example of the discovery process, implementation, and evalua-
tion of how an unconventional architecture supports a special-
ized workload. 
 

Citation for Test of Time award in 10 years? 
 
This paper finds analog acceleration as the missing hardware 
primitive for tackling nonlinear mathematical problems. This 
paper is a first example of composing analog algorithms, allow-
ing researchers to deepen and broaden analog accelerator work-
loads. With these findings, we can use analog accelerators as 
domain-specific accelerators, and not just for one-off applica-
tions. 


