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Motivation: Race to practical quantum computation
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Many research teams now competing towards more reliable and more numerous qubits.
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Motivation: Race to practical quantum computation
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Quantum algorithms for chemical simulations

« Calculate properties of molecules
directly from governing equations
» Use quantum mechanical computer to
simulate quantum mechanics!

Polar graph of Riemann zeta(’z + it)

Shor’s quantum algorithm for factoring integers

« Factor large integers to primes
in polynomial time complexity
« Surpasses any known classical algorithm
taking exponential time complexity

Hundreds of algorithms @ QuantumAlgorithmZoo.org



Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions
email me at stephen.jordan@microsoft.com. Your help is appreciated and will be acknowledg

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: Eiyen an n-bit integer, find the prime factorization. The quantum algorithm of P
solves this in O (n3 ) time [82,125]. The fastest known classical q!gori!hm for integer factorize

the general number field sieve, which is believed to run in time 20("m). The best rigorously p
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quantum
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software packages
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Experimental comparison of two quantum
computing architectures

Norbert M. Linke*®', Dmitri Maslov¢, Martin Roetteler?, Shantanu Debnath®®, Caroline Figga
Kenneth Wright*®, and Christopher Monroe*®*!
2Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742; ®Joint Center for Qua

Science, University of Maryland, College Park, MD 20742; “National Science Foundation, Arlington, VA 22230; ¢Microsoft
and °lonQ Inc., College Park, MD 20742

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elect
Contributed by Christopher Monroe, February 1, 2017 (sent for review November 1, 2016; reviewed by Eric Hudson and |

We run a selection of algori on two state-of-the-art In this article, we make use ¢
5-qubit quantum computers that are based on different technol-  granted by IBM to a 5-qubit st

Very few
guantum algorithms
actually written
and tested
as program code
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Outline: This paper addresses three challenges in quantum debugging

Programmers cannot Quantum states are Programmers don’t yet
easily read variable difficult to understand, have guidelines for
values while a quantum | so they offer limited help | where & what to check in

program runs. for debugging. programs.




Outline: This paper addresses three challenges in quantum debugging

1

Programmers cannot
easily read variable
values while a quantum
program runs.
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Quantum computing primer to understand debugging challenge
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QC variables’ ability to be simultaneously in several values underlies power of quantum computing.



Quantum computing primer to understand debugging challenge
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We cannot pause a quantum computer and “printf debug,” because measurement collapses state.



Toolchain for debugging programs with tests on measurements

Simulate /
Quantum execute on Ensemble
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code quantum measurements

computer




Toolchain for debugging programs with tests on measurements

Breakpoint
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Outline: This paper addresses three challenges in quantum debugging

Programmers cannot
easily read variable
values while a qguantum
program runs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.




Even simple quantum programming bugs lead to non-obvious symptoms
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do { do ! 4@?
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Elementary single-qubit operations

Rz(ql, +angle/2); // C
CNOT(g9, ql);
Rz(ql, -angle/2); // B
CNOT(g@, 9ql);
Rz(q0, +angle/2); // D

QDB: From Quantum Algorithms Towards Correct Quantum Programs
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Even simple quantum programming bugs lead to non-obvious symptoms
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Elementary two-qubit operations

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded

QDB: From Quantum Algorithms Towards Correct Quantum Programs
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Even simple quantum programming bugs lead to non-obvious symptoms
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Unneeded

Rz(ql, +angle/2); // C
CNOT(g9, ql);
Rz(ql, -angle/2); // B
CNOT(g@, 9ql);
Rz(g@, +angle/2); // D
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Even simple quantum programming bugs lead to non-obvious symptoms

Qo { Yo ! DT
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Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT (g0, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded




Even simple quantum programming bugs lead to non-obvious symptoms
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¢ U~ q CHB A+

Rz(ql, +angle/2); // C|CNOT(g@, ql);

CNOT(g@, ql); Rz(ql, -angle/2); // B
Rz(ql, -angle/2); // B|CNOT(g@, ql);

CNOT(g0@, ql); Rz(ql, +angle/2); // A
Rz(g9, +angle/2); // D|Rz(qg0, +angle/2); // D
Correct, Correct,
operation A unneeded operation C unneeded

Many ways to translate basic quantum operations to program code—many details to get right!



Even simple quantum programming bugs lead to non-obvious symptoms
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Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT (g0, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded

|11> — ei*ang/3|11>

CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(ql, +angle/2); // A
Rz(g@, +angle/2); // D

Correct,
operation C unneeded

|11) N ei*angl :|11>

Rz(ql, -angle/2);
CNOT(g®, ql);

Rz(ql, +angle/2);
CNOT(g®, ql);

Rz(g0®, +angle/2); // D

Incorrect,
angles flipped
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Even simple quantum programming bugs lead to non-obvious symptoms
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Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT (g0, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded
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CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(ql, +angle/2); // A
Rz(g@, +angle/2); // D

Correct,
operation C unneeded

|11) N ei*anglelll)

Rz(ql, -angle/2);
CNOT(g®, ql);

Rz(ql, +angle/2);
CNOT(g®, ql);

Rz(g0®, +angle/2); // D

Incorrect,
angles flipped

|11> ) e—i*a lgle|11>
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#include
#define width 4 // number of qubits
int main () {
// initialize quantum variable to 5
gbit reglwidthl];
for ( int i=0; i<width; i++ ) {
PrepZz ( reglil, (i+1)%2 ); // 0b0101
3
// precondition for OFT:
| assert_classical ( reg, width, 5 );
QFT ( width, reg );
// postcondition for QFT &
// precondition for 1iQFT:
assert_superposition ( reg, width );
iQFT ( width, reg );
// postcondition for iOFT:
23| assert_classical ( reg, width, 5 );
b

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests



Outline: This paper addresses three challenges in quantum debugging

Programmers cannot Quantum states are
easily read variable difficult to understand,
values while a quantum | so they offer limited help
program runs. for debugging.

Stop programs early at Use statistical assertions

various points & observe to decide if states are
values, in real hardware or | classical, superposition, or
simulation. entangled.




Structure of quantum algorithm primitives tells programmers what to check

S — S
Upper control register . Quantum . Inverse . 7'1
Classical initial state Fourier quantum A Classical
’ transform * Fourier * result
o o transform o
> @ > >| Measurement
Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”
> >
, > > : :
Lower target register . Controlled adder . Deallocated ancillary qubits
Classical initial state Classical final state
* Controlled modular multiplier y
[} [ J
> Controlled modular exponentiation >

Bring up Shor’s algorithm w/ library of quantum program modules, unit tests, & integration tests.



Structure of quantum algorithm primitives tells programmers what to check
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Entanglement tutorial to understand programming patterns
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Entanglement tutorial to understand programming patterns

Q 2 mo
m_, m, Probability ) my measuiement
Entangled state Measurement mi 0 172 0
Cannot be factored Results correlated measurement 1 | O 1/2
(mg, my) : .
1 . e Contingency table analysis +
Q=7F00+FI ) foo,p =1/, chi-squared statistical test
1,1),P =1/, decides if sets of variables
are correlated




Structure of quantum algorithm primitives tells programmers what to check
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QC programming patterns + entanglement assertions help find bugs

. Upper control register

probability

0 1 2 3 4 5 6 7
o 0 1/8 0 1/8 0 1/8 0 1/8 0
% 5 2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
‘q;,' % 7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
% o 8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
- 13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

The two registers in the contingency table are correlated.



QC programming patterns + entanglement assertions help find bugs

. Upper control register

probability

0 1 2 3 4 5 6 7
o 0 1/8 0 1/8 0 1/8 0 1/8 0
% 5 2 Wed  1/64  1/64 1/64 1/64 1/64  1/64 1/04
‘q;,' .% 7 1/64 1/64 A 1/64 __1/e="1/64 1/64 1/64
g o 8 1/64 1/64 _-930%  1/64 1/0% 1/64 1/64 1/64
- 13704 1/64 1/64 1/64 1/64 1/64  1/oa™==i/A4

Chi-square test on table shows entanglement, causing assertion to fail.



Structure of quantum algorithm primitives tells programmers what to check
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Outline: This paper addresses three challenges in quantum debugging

Programmers cannot
easily read variable
values while a qguantum
program runs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Quantum states are
difficult to understand,
so they offer limited help
for debugging.

Use statistical assertions
to decide if states are
classical, superposition, or
entangled.

Programmers don’t yet
have guidelines for
where & what to check in
programs.

Use a bug taxonomy &
program patterns in
benchmark quantum
algorithms as a guide.
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