Statistical Assertions for Validating Patterns and
Finding Bugs in Quantum Programs

Yipeng Huang and Margaret Martonosi

N UNIVERSITY

Motivation: Race to practical quantum computation

Trapped ion
qubits

Superconducting qubits

University of
Rigetti Maryland /
lonQ

Many research teams now competing towards more reliable and more numerous qubits.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

Motivation: Race to practical quantum computation

~ = Ground state (G)

- 1st excited state (E1)
A 2nd excited state (E2)
= 3rd excited state (E3)

Energy (MJ mol-1)
N

ol ™ I

Lanyon and Whitfield et al., 2010

50 100 150 200 250

Atomic separation (pm)

Quantum algorithms for chemical simulations

« Calculate properties of molecules
directly from governing equations
» Use quantum mechanical computer to
simulate quantum mechanics!

Polar graph of Riemann zeta(’z + it)

Shor’s quantum algorithm for factoring integers

« Factor large integers to primes
in polynomial time complexity
« Surpasses any known classical algorithm
taking exponential time complexity

Hundreds of algorithms @ QuantumAlgorithmZoo.org

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions
email me at stephen.jordan@microsoft.com. Your help is appreciated and will be acknowledg

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: Eiyen an n-bit integer, find the prime factorization. The quantum algorithm of P
solves this in O (n3) time [82,125]. The fastest known classical q!gori!hm for integer factorize

the general number field sieve, which is believed to run in time 20("m). The best rigorously p

Hundreds of
quantum algorithm
specifications

Quantiki

Quantum Information Portal and
Wiki

Q);

a List of QC simulators

C/C++
o QuEST

User login

Dozens of
quantum
programming languages
and open source
software packages

GAP!

Experimental comparison of two quantum
computing architectures

Norbert M. Linke*®', Dmitri Maslov¢, Martin Roetteler?, Shantanu Debnath®®, Caroline Figga
Kenneth Wright*®, and Christopher Monroe*®*!
2Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742; ®Joint Center for Qua

Science, University of Maryland, College Park, MD 20742; “National Science Foundation, Arlington, VA 22230; ¢Microsoft
and °lonQ Inc., College Park, MD 20742

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elect
Contributed by Christopher Monroe, February 1, 2017 (sent for review November 1, 2016; reviewed by Eric Hudson and |

We run a selection of algori on two state-of-the-art In this article, we make use ¢
5-qubit quantum computers that are based on different technol- granted by IBM to a 5-qubit st

Very few
guantum algorithms
actually written
and tested
as program code

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs

Yipeng Huang, Margaret Martonosi | Princeton University

Quantiki

Quantum Information Portal and

[4)

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions

email me at stephen.jordan@microsoft.com. Your help is appreciated and will be acknowledg

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring Q
Speedup: Superpolynomial

List of QC simulators
Description: leen an n-bit integer, find the prime factorization. The quantum algorithm of P

solves this in O (n*) time [82,125]. The fastest known classical algo rithm for integer factorize User Iogin C/C++
the general number field sieve, which is believed to run |n tlme 20(") . The best rigorously p o OUEST

Dozens of
quantum
programming languages
and open source
software packages

Hundreds of
quantum algorithm
specifications

Experimental comparison of two quantum
computing architectures

No bert M. Linke®™', Dmitri Maslov® Mart Roettele , Shantanu Debnath®®, Caroline Figga

neth Wright®®, and Christopher M
2Joi Q u Dp rtment fhy s, Uni y fM ryI dCIIg P kMD20742 J nt Center for Q
sci and, College kM 2742 ingtol 30M soft
dl QI Cllg P kMD20742
This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elect
Contributed by Christopher Monroe, February 1, 2017 (sent for review November 1, 2016; reviewed by Eric Hudson and |
We run a selection of al h two t rt In this article, wemk
5-qul btq tm(omptrstht b d dff ent te h ol- gral tdbyIBMt 5qbt

Very few
guantum algorithms
actually written
and tested
as program code

Hardware and
simulator
infrastructure gap:
Need scalable
simulators,
and more abundant &
reliable qubits

Software tools gap:
Need higher level
programming
Ianguages

debuqqers

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

Outline: This paper addresses three challenges in quantum debugging

Programmers cannot Quantum states are Programmers don’t yet
easily read variable difficult to understand, have guidelines for
values while a quantum | so they offer limited help | where & what to check in

program runs. for debugging. programs.

Outline: This paper addresses three challenges in quantum debugging

1

Programmers cannot
easily read variable
values while a quantum
program runs.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

Quantum computing primer to understand debugging challenge

0) {] - q

Classical value Hadamard gate Quantum qubit
Deterministic A quantum operator Superposition
1
10) = [] 1o
0 — _ 1 1
e o)y —£11)
70 Y V2
1) =,] q = HI0)

QC variables’ ability to be simultaneously in several values underlies power of quantum computing.

Quantum computing primer to understand debugging challenge

0) {#] > q L A—m

Classical value Hadamard gate Quantum qubit Measurement
Deterministic A quantum operator Superposition Collapses state
_ 1 111 1
|O>_[0] H==[| 1 1 (0,p=1/
V211 1 _ 2
q=—=I00+—=I1) | m= 1 1

10 V2§ V2 L,p=1/,

1) =,] q = HI0) \

We cannot pause a quantum computer and “printf debug,” because measurement collapses state.

Toolchain for debugging programs with tests on measurements

Simulate /
Quantum execute on Ensemble
assembly prototype ==pp of e

code quantum measurements

computer

Toolchain for debugging programs with tests on measurements

Breakpoint
annotations
Simulate /
Quantum execute on Ensemble Statistical test:
=P assembly prototype ==pp of =P |[s there
code guantum measurements a bug?
computer
Assertion

annotations

Outline: This paper addresses three challenges in quantum debugging

Programmers cannot
easily read variable
values while a qguantum
program runs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Even simple quantum programming bugs lead to non-obvious symptoms

——

do { do ! 4@?

—~—

q; | U — %9‘@0 A+

Elementary single-qubit operations

Rz(ql, +angle/2); // C
CNOT(g9, ql);
Rz(ql, -angle/2); // B
CNOT(g@, 9ql);
Rz(q0, +angle/2); // D

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

Even simple quantum programming bugs lead to non-obvious symptoms

AAN

o o

9 1 U— q1CBABPHAF

Elementary two-qubit operations

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

26

Even simple quantum programming bugs lead to non-obvious symptoms

o o t — Dr
a U~ q C B X+
Unneeded

Rz(ql, +angle/2); // C
CNOT(g9, ql);
Rz(ql, -angle/2); // B
CNOT(g@, 9ql);
Rz(g@, +angle/2); // D

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

27

Even simple quantum programming bugs lead to non-obvious symptoms

Qo { Yo ! DT
a U q & B A

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT (g0, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms

Jo Yo ! —Dr
¢ U~ q CHB A+

Rz(ql, +angle/2); // C|CNOT(g@, ql);

CNOT(g@, ql); Rz(ql, -angle/2); // B
Rz(ql, -angle/2); // B|CNOT(g@, ql);

CNOT(g0@, ql); Rz(ql, +angle/2); // A
Rz(g9, +angle/2); // D|Rz(qg0, +angle/2); // D
Correct, Correct,
operation A unneeded operation C unneeded

Many ways to translate basic quantum operations to program code—many details to get right!

Even simple quantum programming bugs lead to non-obvious symptoms

o

q: —

o t

— D |

q:

A_

/A
N

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT (g0, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded

|11> — ei*ang/3|11>

CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(ql, +angle/2); // A
Rz(g@, +angle/2); // D

Correct,
operation C unneeded

|11) N ei*angl :|11>

Rz(ql, -angle/2);
CNOT(g®, ql);

Rz(ql, +angle/2);
CNOT(g®, ql);

Rz(g0®, +angle/2); // D

Incorrect,
angles flipped

|11> N e—i*angl :|11>

Even simple quantum programming bugs lead to non-obvious symptoms

o

q: —

o t

— D |

q:

A_

/A
N

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT (g0, ql);
Rz(g@, +angle/2); // D

Correct,
operation A unneeded

|11> N ei*angle|11>

CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(ql, +angle/2); // A
Rz(g@, +angle/2); // D

Correct,
operation C unneeded

|11) N ei*anglelll)

Rz(ql, -angle/2);
CNOT(g®, ql);

Rz(ql, +angle/2);
CNOT(g®, ql);

Rz(g0®, +angle/2); // D

Incorrect,
angles flipped

|11>) e—i*a lgle|11>

O 0 N N ok W N =

[NCR BGCH | SCRE R e C
AREWEN = O O 0 NN O Uk WEN = O

#include
#define width 4 // number of qubits
int main () {
// initialize quantum variable to 5
gbit reglwidthl];
for (int i=0; i<width; i++) {
PrepZz (reglil, (i+1)%2); // 0b0101
3
// precondition for OFT:
| assert_classical (reg, width, 5);
QFT (width, reg);
// postcondition for QFT &
// precondition for 1iQFT:
assert_superposition (reg, width);
iQFT (width, reg);
// postcondition for iOFT:
23| assert_classical (reg, width, 5);
b

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests

Outline: This paper addresses three challenges in quantum debugging

Programmers cannot Quantum states are
easily read variable difficult to understand,
values while a quantum | so they offer limited help
program runs. for debugging.

Stop programs early at Use statistical assertions

various points & observe to decide if states are
values, in real hardware or | classical, superposition, or
simulation. entangled.

Structure of quantum algorithm primitives tells programmers what to check

S — S
Upper control register . Quantum . Inverse . 7'1
Classical initial state Fourier quantum A Classical
’ transform * Fourier * result
o o transform o
> @ > >| Measurement
Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”
> >
, > > : :
Lower target register . Controlled adder . Deallocated ancillary qubits
Classical initial state Classical final state
* Controlled modular multiplier y
[} [J
> Controlled modular exponentiation >

Bring up Shor’s algorithm w/ library of quantum program modules, unit tests, & integration tests.

Structure of quantum algorithm primitives tells programmers what to check

Upper control register
Classical initial state

\A4

Increasing entangleme¢ nt| ‘memory allocation”

>

Lower target register
Classical initial state

>
>

Quantum o
Fourier
transform

>
> Inverse
quantum
Fourier
transform
>

\A4

>

7 A
" Classical

result

Measurement

Decreasing entangleme nt | ‘garbage collection”

>

Contro le | adder

Controlled mod ilar multiplier

Controlled modt i r exponentiation

g inout

k, the algorithm iteration

0

a=72 mod 15
=T

7

alaxa =1 modl5

Deallocated ancillary qubits
Classical final state

Entanglement tutorial to understand programming patterns

|0)

m

l

|0)

Two qubits
Tensor product

10) ® [0) = || = 100)

Soonx

Product state
Can be factored

shlell

=~ 100) + —|10)
V2 V2

Controlled-NOT
Two-qubit operator

10 0 0
1o 1 0 o
CNOT‘l0001
0 0 1 0

Entangled state
Cannot be factored

1 1
Q :ﬁ|00>+\/_§|11>

mq

12— mo
(A

Measurement
Results correlated

(mOJ ml)

. {(0,0>,P =1/,

an,p =1/,

Entanglement tutorial to understand programming patterns

Q 2 mo
m_, m, Probability) my measuiement
Entangled state Measurement mi 0 172 0
Cannot be factored Results correlated measurement 1 | O 1/2
(mg, my) : .
1 . e Contingency table analysis +
Q=7F00+FI) foo,p =1/, chi-squared statistical test
1,1),P =1/, decides if sets of variables
are correlated

Structure of quantum algorithm primitives tells programmers what to check

Classical initial state

Increasing entanglement “memory allocation”

Classical initial state

VvV

Quantum
Fourier
transform

@ >

Inverse
quantum
Fourier
transform

\I/

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

g inout

k, the algorithm iteration || 0 1

a=7 mod15 || 7

—1

alaxa =1 modl5 4

\I/ \l/

\I/ \l/

7 A
" Classical

result

| Measurement

Decreasing entangleme nt | ‘garbage collection”

Deallocated ancillary qubits
Classical final state

\I/

QC programming patterns + entanglement assertions help find bugs

. Upper control register

probability

0 1 2 3 4 5 6 7
o 0 1/8 0 1/8 0 1/8 0 1/8 0
% 5 2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
‘q;,' % 7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
% o 8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
- 13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

The two registers in the contingency table are correlated.

QC programming patterns + entanglement assertions help find bugs

. Upper control register

probability

0 1 2 3 4 5 6 7
o 0 1/8 0 1/8 0 1/8 0 1/8 0
% 5 2 Wed 1/64 1/64 1/64 1/64 1/64 1/64 1/04
‘q;,' .% 7 1/64 1/64 A 1/64 __1/e="1/64 1/64 1/64
g o 8 1/64 1/64 _-930% 1/64 1/0% 1/64 1/64 1/64
- 13704 1/64 1/64 1/64 1/64 1/64 1/oa™==i/A4

Chi-square test on table shows entanglement, causing assertion to fail.

Structure of quantum algorithm primitives tells programmers what to check

>
_ >
Upper control register R Quantum
Classical initial state Fourier
[}
transform
[)
>

@ >

Inverse
quantum
Fourier
transform

\A4

>

Increasing entanglement “memory allocation”

; >
Lower target register . Controlled adder
Classical initial state
* Controlled modular multiplier
[}
> Controlled modular exponentiation >

g inout

k, the algorithm iteration || 0 1

a=7 mod15 U7

—1

alaxa =1 modl5 4

7 A
" Classical

result

Measurement

Decreasing entangleme nt | ‘garbage collection”

Deallocated ancillary qubits
Classical final state

Outline: This paper addresses three challenges in quantum debugging

Programmers cannot
easily read variable
values while a qguantum
program runs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Quantum states are
difficult to understand,
so they offer limited help
for debugging.

Use statistical assertions
to decide if states are
classical, superposition, or
entangled.

Programmers don’t yet
have guidelines for
where & what to check in
programs.

Use a bug taxonomy &
program patterns in
benchmark quantum
algorithms as a guide.

|Q> Quantiki
I A Quantum Information Portal and

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions

email me at stephen.jordan@microsoft.com. Your help is appreciated and will be acknowledg

Algebraic and Number Theoretic Algorithms
Algorithm: Factoring Q 1 3

stk S List of QC simulators
Description: leen an n-bit integer, find the prime factorization. The quantum algorithm of P
solves this in O(n) time [82,125]. The fastest known classical algo rithm for integer factorize User Iogin C/C++

the general number field sieve, which is believed to run |n tlme 20(") . The best rigorously p o OUEST

Dozens of
quantum
programming languages
and open source
software packages

Hundreds of
quantum algorithm
specifications

Hardware and

Software tools gap:
Need higher level
programming
Ianguages

debuqqers

simulator

simulators,

Experimental comparison of two quantum
computing architectures

No bert M. Linke®™', Dmitri Maslov® Mart Roettele , Shantanu Debnath®®, Caroline Figga

neth Wright®®, and Christopher M
2Joi Q u Dp rtment fhy s, Uni y fM ryI dCIIg P kMD20742 J nt Center for Q
sci and, College kM 2742 ingtol 30M soft
dl QI Cllg P kMD20742
This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elect
Contributed by Christopher Monroe, February 1, 2017 (sent for review November 1, 2016; reviewed by Eric Hudson and |
We run a selection of al h two t rt In this article, wemk
5-qul btq tm(omptrstht b d dff ent te h ol- gral tdbyIBMt 5qbt

Very few
guantum algorithms
actually written
and tested
as program code

infrastructure gap:
Need scalable

and more abundant &
reliable qubits

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs

Yipeng Huang, Margaret Martonosi | Princeton University

63

