
Statistical Assertions for Validating Patterns and
Finding Bugs in Quantum Programs

Yipeng Huang and Margaret Martonosi

This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730082

Motivation: Race to practical quantum computation

Superconducting qubits Trapped ion
qubits

IBM Google Intel Rigetti
University of
Maryland /

IonQ

Many research teams now competing towards more reliable and more numerous qubits.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 2

Motivation: Race to practical quantum computation

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 3

Hundreds of algorithms @ QuantumAlgorithmZoo.org

Quantum algorithms for chemical simulations Shor’s quantum algorithm for factoring integers
• Calculate properties of molecules

directly from governing equations
• Use quantum mechanical computer to

simulate quantum mechanics!

• Factor large integers to primes
in polynomial time complexity

• Surpasses any known classical algorithm
taking exponential time complexity

Lanyon and Whitfield et al., 2010

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 4

Hundreds of
quantum algorithm

specifications

Dozens of
quantum

programming languages
and open source

software packages

Very few
quantum algorithms

actually written
and tested

as program code

GAP!

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 6

Hundreds of
quantum algorithm

specifications

Dozens of
quantum

programming languages
and open source

software packages

Very few
quantum algorithms

actually written
and tested

as program code

Software tools gap:
Need higher level

programming
languages,

optimizing compilers,
debuggers

Hardware and
simulator

infrastructure gap:
Need scalable

simulators,
and more abundant &

reliable qubits

Outline: This paper addresses three challenges in quantum debugging

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 8

1 2 3
Programmers cannot
easily read variable
values while a quantum
program runs.

Quantum states are
difficult to understand,
so they offer limited help
for debugging.

Programmers don’t yet
have guidelines for
where & what to check in
programs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Use statistical assertions
to decide if states are
classical, superposition, or
entangled.

Use a bug taxonomy &
program patterns in
benchmark quantum
algorithms as a guide.

Outline: This paper addresses three challenges in quantum debugging

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 9

1
Programmers cannot
easily read variable
values while a quantum
program runs.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 14

Quantum computing primer to understand debugging challenge

Classical value
Deterministic

Hadamard gate
A quantum operator

Quantum qubit
Superposition

⟩|0 = 1
0

⟩|1 = 0
1

𝐻 =
1
2
1 1
1 −1

𝑞 = 𝐻 ⟩|0

𝑞 =
1
2

⟩|0 +
1
2

⟩|1

𝐻⟩|0 𝑞

QC variables’ ability to be simultaneously in several values underlies power of quantum computing.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 16

Quantum computing primer to understand debugging challenge

Classical value
Deterministic

Hadamard gate
A quantum operator

Quantum qubit
Superposition

Measurement
Collapses state

⟩|0 = 1
0

⟩|1 = 0
1

𝐻 =
1
2
1 1
1 −1

𝑞 = 𝐻 ⟩|0

𝑞 =
1
2

⟩|0 +
1
2

⟩|1 𝑚 = ,
0, 𝑃 = /1 2
1, 𝑃 = /1 2

𝐻⟩|0 𝑚𝑞

We cannot pause a quantum computer and “printf debug,” because measurement collapses state.

Toolchain for debugging programs with tests on measurements

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 18

Breakpoint
annotations

Quantum
assembly

code

Simulate /
execute on
prototype
quantum
computer

Ensemble
of

measurements

Statistical test:
Is there
a bug?

Assertion
annotations

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 19

Shor’s
integer

factoring
benchmark

Breakpoint
annotations

Grover’s
database

search
benchmark

Scaffold
quantum

programming
language

Quantum
assembly

code

Simulate /
execute on
prototype
quantum
computer

Ensemble
of

measurements

Statistical test:
Is there
a bug?

Quantum
chemistry

benchmark
Assertion

annotations

Toolchain for debugging programs with tests on measurements

Outline: This paper addresses three challenges in quantum debugging

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 22

1 2
Programmers cannot
easily read variable
values while a quantum
program runs.

Quantum states are
difficult to understand,
so they offer limited help
for debugging.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

U

q0

q1 C

q0

q1 B A

D
=

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 25

Elementary single-qubit operations

Even simple quantum programming bugs lead to non-obvious symptoms

U

q0

q1 C

q0

q1 B A

D
=

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 26

Elementary two-qubit operations
Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms

Unneeded

U

q0

q1 C

q0

q1 B A

D
=

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 27

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Unneeded

U

q0

q1 C

q0

q1 B A

D
=

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 28

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

Unneeded?
But signs on angles wrong!

U

q0

q1 C

q0

q1 B A

D
=

Many ways to translate basic quantum operations to program code—many details to get right!

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

|1 ⟩1 → 𝑒1∗34567|1 ⟩1 |1 ⟩1 → 𝑒1∗34567|1 ⟩1 |1 ⟩1 → 𝑒81∗34567|1 ⟩1

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

|1 ⟩1 → 𝑒1∗34567|1 ⟩1 |1 ⟩1 → 𝑒1∗34567|1 ⟩1 |1 ⟩1 → 𝑒81∗34567|1 ⟩1

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

Assertions on classical &
superposition states
help us decide whether
programs are correct

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 36

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests

Outline: This paper addresses three challenges in quantum debugging

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 40

1 2 3
Programmers cannot
easily read variable
values while a quantum
program runs.

Quantum states are
difficult to understand,
so they offer limited help
for debugging.

Programmers don’t yet
have guidelines for
where & what to check in
programs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Use statistical assertions
to decide if states are
classical, superposition, or
entangled.

Structure of quantum algorithm primitives tells programmers what to check

Bring up Shor’s algorithm w/ library of quantum program modules, unit tests, & integration tests.

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

Lower target register
Classical initial state

Deallocated ancillary qubits
Classical final state

Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”

Quantum
Fourier

transform

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

Measurement

Classical
result

Structure of quantum algorithm primitives tells programmers what to check

input

12

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

Lower target register
Classical initial state

Deallocated ancillary qubits
Classical final state

Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”

Quantum
Fourier

transform

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

Measurement

Classical
result

Product
(not entangled)

state

Entangled
state

Product
(not entangled)

state

Entanglement tutorial to understand programming patterns
𝐻⟩|0 𝑚9

𝑚:⟩|0

Two qubits
Tensor product

Product state
Can be factored

Controlled-NOT
Two-qubit operator

Entangled state
Cannot be factored

Measurement
Results correlated

⟩|0 ⊗ ⟩|0 =

1
0
0
0

= ⟩|00

1
2
1
1 ⊗ 1

0

=
1
2

⟩|00 +
1
2

⟩|10

CNOT =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝑄 =
1
2

⟩|00 +
1
2

⟩|11

𝑚9,𝑚:

= ,
(0,0), 𝑃 = /1 2
(1,1), 𝑃 = /1 2

𝑄

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 51

Entanglement tutorial to understand programming patterns
𝑚9

𝑚:

Entangled state
Cannot be factored

Measurement
Results correlated

𝑄 =
1
2

⟩|00 +
1
2

⟩|11

𝑚9,𝑚:

= ,
(0,0), 𝑃 = /1 2
(1,1), 𝑃 = /1 2

𝑄

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 52

Contingency table analysis +
chi-squared statistical test
decides if sets of variables

are correlated

Structure of quantum algorithm primitives tells programmers what to check

input

12

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

Lower target register
Classical initial state

Deallocated ancillary qubits
Classical final state

Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”

Quantum
Fourier

transform

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

Measurement

Classical
result

Product
(not entangled)

state

probability
Upper control register

0 1 2 3 4 5 6 7

Lo
w

er
 ta

rg
et

re

gi
st

er

0 1/8 0 1/8 0 1/8 0 1/8 0
2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

QC programming patterns + entanglement assertions help find bugs

The two registers in the contingency table are correlated.

probability
Upper control register

0 1 2 3 4 5 6 7

Lo
w

er
 ta

rg
et

re

gi
st

er

0 1/8 0 1/8 0 1/8 0 1/8 0
2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

QC programming patterns + entanglement assertions help find bugs

Chi-square test on table shows entanglement, causing assertion to fail.

Structure of quantum algorithm primitives tells programmers what to check

input

12

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

Lower target register
Classical initial state

Deallocated ancillary qubits
Classical final state

Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”

Quantum
Fourier

transform

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

Measurement

Classical
result

Product
(not entangled)

state

Outline: This paper addresses three challenges in quantum debugging

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 62

1 2 3
Programmers cannot
easily read variable
values while a quantum
program runs.

Quantum states are
difficult to understand,
so they offer limited help
for debugging.

Programmers don’t yet
have guidelines for
where & what to check in
programs.

Stop programs early at
various points & observe
values, in real hardware or
simulation.

Use statistical assertions
to decide if states are
classical, superposition, or
entangled.

Use a bug taxonomy &
program patterns in
benchmark quantum
algorithms as a guide.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 63

Hundreds of
quantum algorithm

specifications

Dozens of
quantum

programming languages
and open source

software packages

Very few
quantum algorithms

actually written
and tested

as program code

Software tools gap:
Need higher level

programming
languages,

optimizing compilers,
debuggers

Hardware and
simulator

infrastructure gap:
Need scalable

simulators,
and more abundant &

reliable qubits

