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Motivation: Race to practical quantum computation

Superconducting qubits Trapped ion 
qubits

IBM Google Intel Rigetti
University of 
Maryland /

IonQ

Many research teams now competing towards more reliable and more numerous qubits.
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Hundreds of algorithms @ QuantumAlgorithmZoo.org

Quantum algorithms for chemical simulations Shor’s quantum algorithm for factoring integers
• Calculate properties of molecules

directly from governing equations
• Use quantum mechanical computer to

simulate quantum mechanics!

• Factor large integers to primes
in polynomial time complexity

• Surpasses any known classical algorithm
taking exponential time complexity

Lanyon and Whitfield et al., 2010
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Hundreds of
quantum algorithm

specifications

Dozens of
quantum

programming languages
and open source

software packages

Very few
quantum algorithms

actually written
and tested

as program code

GAP!
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Hundreds of
quantum algorithm

specifications

Dozens of
quantum

programming languages
and open source

software packages

Very few
quantum algorithms

actually written
and tested

as program code

Software tools gap:
Need higher level 

programming 
languages,

optimizing compilers, 
debuggers

Hardware and 
simulator 

infrastructure gap:
Need scalable 

simulators,
and more abundant & 

reliable qubits



Outline: This paper addresses three challenges in quantum debugging
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1 2 3
Programmers cannot 
easily read variable 
values while a quantum 
program runs.

Quantum states are 
difficult to understand, 
so they offer limited help 
for debugging.

Programmers don’t yet 
have guidelines for 
where & what to check in 
programs.

Stop programs early at 
various points & observe 
values, in real hardware or 
simulation.

Use statistical assertions 
to decide if states are 
classical, superposition, or 
entangled.

Use a bug taxonomy & 
program patterns in 
benchmark quantum 
algorithms as a guide.
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1
Programmers cannot 
easily read variable 
values while a quantum 
program runs.
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Quantum computing primer to understand debugging challenge

Classical value
Deterministic

Hadamard gate
A quantum operator

Quantum qubit
Superposition

⟩|0 = 1
0

⟩|1 = 0
1

𝐻 =
1
2
1 1
1 −1

𝑞 = 𝐻 ⟩|0

𝑞 =
1
2

⟩|0 +
1
2

⟩|1

𝐻⟩|0 𝑞

QC variables’ ability to be simultaneously in several values underlies power of quantum computing.
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Quantum computing primer to understand debugging challenge

Classical value
Deterministic

Hadamard gate
A quantum operator

Quantum qubit
Superposition

Measurement
Collapses state

⟩|0 = 1
0

⟩|1 = 0
1

𝐻 =
1
2
1 1
1 −1

𝑞 = 𝐻 ⟩|0

𝑞 =
1
2

⟩|0 +
1
2

⟩|1 𝑚 = ,
0, 𝑃 = /1 2
1, 𝑃 = /1 2

𝐻⟩|0 𝑚𝑞

We cannot pause a quantum computer and “printf debug,” because measurement collapses state.



Toolchain for debugging programs with tests on measurements
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Breakpoint 
annotations

Quantum 
assembly

code

Simulate / 
execute on 
prototype 
quantum 
computer

Ensemble
of

measurements

Statistical test:
Is there
a bug?

Assertion 
annotations
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Shor’s
integer

factoring
benchmark

Breakpoint 
annotations

Grover’s
database

search
benchmark

Scaffold
quantum 

programming 
language

Quantum 
assembly

code

Simulate / 
execute on 
prototype 
quantum 
computer

Ensemble
of

measurements

Statistical test:
Is there
a bug?

Quantum 
chemistry 

benchmark
Assertion 

annotations

Toolchain for debugging programs with tests on measurements
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1 2
Programmers cannot 
easily read variable 
values while a quantum 
program runs.

Quantum states are 
difficult to understand, 
so they offer limited help 
for debugging.

Stop programs early at 
various points & observe 
values, in real hardware or 
simulation.



Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D
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Elementary single-qubit operations

Even simple quantum programming bugs lead to non-obvious symptoms
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Elementary two-qubit operations
Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms
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Even simple quantum programming bugs lead to non-obvious symptoms



Rz(q1, +angle/2); // C
CNOT(q0, q1);
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CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
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Rz(q1, -angle/2); 
CNOT(q0, q1);
Rz(q1, +angle/2); 
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

Unneeded?
But signs on angles wrong!
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D
=

Many ways to translate basic quantum operations to program code—many details to get right!

Even simple quantum programming bugs lead to non-obvious symptoms
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Assertions on classical & 
superposition states
help us decide whether
programs are correct
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Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests
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1 2 3
Programmers cannot 
easily read variable 
values while a quantum 
program runs.

Quantum states are 
difficult to understand, 
so they offer limited help 
for debugging.

Programmers don’t yet 
have guidelines for 
where & what to check in 
programs.

Stop programs early at 
various points & observe 
values, in real hardware or 
simulation.

Use statistical assertions 
to decide if states are 
classical, superposition, or 
entangled.



Structure of quantum algorithm primitives tells programmers what to check

Bring up Shor’s algorithm w/ library of quantum program modules, unit tests, & integration tests.

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

Lower target register
Classical initial state

Deallocated ancillary qubits
Classical final state

Increasing entanglement “memory allocation” Decreasing entanglement “garbage collection”

Quantum 
Fourier 

transform

Inverse 
quantum 
Fourier 

transform

Upper control register
Classical initial state

Measurement

Classical
result



Structure of quantum algorithm primitives tells programmers what to check

input

12

Controlled adder

Controlled modular multiplier

Controlled modular exponentiation

Lower target register
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Entanglement tutorial to understand programming patterns
𝐻⟩|0 𝑚9

𝑚:⟩|0

Two qubits
Tensor product

Product state
Can be factored

Controlled-NOT
Two-qubit operator

Entangled state
Cannot be factored

Measurement
Results correlated

⟩|0 ⊗ ⟩|0 =

1
0
0
0

= ⟩|00

1
2
1
1 ⊗ 1

0

=
1
2

⟩|00 +
1
2

⟩|10

CNOT =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝑄 =
1
2

⟩|00 +
1
2

⟩|11

𝑚9,𝑚:

= ,
(0,0), 𝑃 = /1 2
(1,1), 𝑃 = /1 2

𝑄
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Contingency table analysis +
chi-squared statistical test
decides if sets of variables

are correlated



Structure of quantum algorithm primitives tells programmers what to check

input

12

Controlled adder

Controlled modular multiplier
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Lower target register
Classical initial state
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probability
Upper control register

0 1 2 3 4 5 6 7

Lo
w

er
 ta

rg
et

 
re

gi
st

er

0 1/8 0 1/8 0 1/8 0 1/8 0
2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

QC programming patterns + entanglement assertions help find bugs

The two registers in the contingency table are correlated.
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13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

QC programming patterns + entanglement assertions help find bugs

Chi-square test on table shows entanglement, causing assertion to fail.
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1 2 3
Programmers cannot 
easily read variable 
values while a quantum 
program runs.

Quantum states are 
difficult to understand, 
so they offer limited help 
for debugging.

Programmers don’t yet 
have guidelines for 
where & what to check in 
programs.

Stop programs early at 
various points & observe 
values, in real hardware or 
simulation.

Use statistical assertions 
to decide if states are 
classical, superposition, or 
entangled.

Use a bug taxonomy & 
program patterns in 
benchmark quantum 
algorithms as a guide.
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