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In  classical  computing,  debugging  programs  is  one  of         

the  most  time-consuming  tasks  in  software  development.        
Successful  debugging  relies  on  software  development  tools        
and  also  on  the  experience  of  the  programmer.  In  quantum           
computing  (QC),  researchers  foresee  debugging  to  be  an  even          
greater  challenge.  In  our  ISCA  ’19  paper ,  we  present          1

approaches  that  represent  some  of  the  first-ever  steps  towards          
debugging  tools  for  QC  software  and  hardware  systems.  The          
debugging  tools  we  propose  are  based  on  statistical  tests,  with           
a  goal  of  aiding  programmers  in  building  correct  quantum          
programs  for  near-term  quantum  computers.  They  can  also  be          
used  by  hardware  designers  to  assess  correct  operation.         
Furthermore,  we  study  a  broad  cross  section  of  quantum          
algorithms,  in  order  to  identify  recurring  quantum  program         
patterns  and  anti-patterns.  These  bugs  and  program  patterns         
represent  common  and  therefore  important  themes  in  QC         
debugging.  They  can  guide  the  programmer  to  know  where  to           
put   our   proposed   assertions   for   effective   debugging.  

Over  roughly  the  past  two  decades,  researchers  have         
discovered  hundreds  of  QC  algorithms  covering  a  range  of          
applications  in  chemistry,  optimization,  search,  and       
cryptography.  Thus  far,  however,  almost  all  of  these         
algorithms  only  exist  as  abstract  equations  and  specifications,         
and  therefore  may  not  have  been  fully  checked  for  correctness.           
For  some,  lucky  readers  may  find  concrete  quantum  circuit          
diagrams  among  those  specifications.  A  few  dozen  have         
actually  been  fleshed-out  as  program  code  in  open-source         
repositories.  Some  of  those  implementations  are  likely  correct,         
but  almost  none  have  been  deeply  debugged  until  now.          
Quantum   programming   is   in   its   infancy.  

The  QC  research  landscape  has  changed  rapidly.  In         
the  past  handful  of  years,  researchers  have  built  the  first           
prototype  quantum  computers  capable  of  running  small        
quantum  programs.  Notably,  IBM  has  made  simulators  and         
small-scale  quantum  computers  available  for  the  public  to  run          
code  and  see  results. With  this  burgeoning  interest  in  quantum           
computing  experimentation,  a  new  and  urgent  challenge  lies         
in  understanding  what  are  quantum  program  bugs,  and  in          
helping  experienced  and  novice  quantum  programmers       
translate  those  abstract  algorithms  into  correctly  functioning        
quantum  program  code.  Our  ISCA ’ 19  work  makes  the          
community’s   first   steps   towards   meeting   this   challenge.  
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We  started  this  project  by  studying  a  wide  array  of           

quantum  program  benchmark  implementations  in  several       
quantum  programming  languages.  The  ISCA  ’19  paper        
covered  important  exemplar  algorithms  such  as  quantum        
chemistry,  Grover’s  database  search,  and  Shor’s  integer        
factorization.  We  also  analyzed  several  programs  not  treated  in          
our  paper  such  as  optimization  using  a  hybrid         
quantum-classical  algorithm,  and  algorithms  that  rely  on        
adiabatic  evolution  of  quantum  states.  The  goal  was  to  capture           
a  wide  variety  of  quantum  algorithm  primitives—algorithm        
kernels  that  underlie  the  functionality  of  these  algorithms  and          
that  are  widely  used  across  many  QC  algorithms.  These          
algorithm  primitives  include  variational  optimization,      
amplitude  amplification,  and  quantum  Fourier  transform.  The        
implementations  we  studied  span  several  open-source  QC        
programming  languages  such  as  Scaffold,  Microsoft’s       
ProjectQ,  IBM’s  Qiskit,  and  Google’s  Cirq.  The  goal  was  to           
have  a  broad  understanding  of  how  programmers  might  make          
mistakes  in  writing  QC  programs,  and  also  to  understand  how           
different  programming  language  features  aid  writing  correct        
code.  This  is  akin  to  prior  papers  on  programming  design           
patterns   and   parallel   programming   patterns.  

In  the  process  of  building  and  analyzing  the  quantum          
algorithm  benchmarks,  our  paper  identifies  and  highlights        
three   key   difficulties   in   debugging   quantum   programs.  
 
Challenge  #1:  Getting  quantum  debugging  information  is        
not  straightforward  as  in  classical  debugging.  The  first         
difficulty  is  that  programmers  cannot  easily  examine  the         
values  of  variables  of  a  QC  program,  while  the  program  is            
running.  Inspecting  quantum  variables  involves  measuring  and        
“collapsing”  the  delicate  quantum  states  inside  quantum        
computers.  Once  a  quantum  state  is  collapsed,  any         
observations  would  not  be  a  complete  description  of  the  state           
of  the  program.  This  limitation  precludes  the  “printf”         
debugging  approach  commonly  used  by  programmers  with        
classical   programs.  
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 Quantum   algorithm  
primitives  Benchmark   algorithms   /   problems  

Exhibited   program   patterns   /  
assertions   for   debugging  

Algorithms   for  
near-term,   noisy,  
intermediate-scale  
quantum   computing   era  

Entanglement   protocols   for  
quantum   networking  

Superdense   coding;  
Quantum   teleportation  

Entanglement   precondition   assertions  
on   initial   conditions  

Hybrid   quantum-classical  
variational   algorithms  

Quantum   approximate   optimization;  
Variational   quantum   eigensolver  Iterative   algorithm   progress   checks  

Algorithms   for  
future,   fault-tolerant,  
large-scale  
quantum   computing   era  

Adiabatic   evolution   of  
quantum   states  Ising   spin   chain   model  Iterative   algorithm   progress   checks  

Amplitude   amplification  Grover’s   database   search  Postcondition   assertions   that   search  
results   satisfy   criteria  

Quantum   Fourier   transform  Phase   estimation;   Period   finding;  
Shor’s   integer   factoring  

Postcondition   assertions   on   correct  
deallocation   of   ancillary   qubits;  
Modularity;   Numerical   data   types  

 
Our  paper  addresses  Challenge  #1  by  finding  ways  to          

debug  quantum  programs  using  only  the  information  about  the          
collapsed  quantum  states  (see  figure  on  first  page).  We          
consider  debugging  programs  in  both  simulated  and        
real-system  settings.  In  both  settings,  we  introduce  program         
instructions  that  tell  the  simulator  or  quantum  computer  to          
stop  operation  and  measure  quantum  states  early.  The         
toolchain  then  uses  multiple  runs  of  the  quantum  program  in           
order  to  find  the  probability  distribution  of  the  measurement          
outcomes  from  the  quantum  algorithm.  In  simulated  settings,         
these  probability  distributions  are  tracked  as  internal  data         
structures  as  the  simulation  progresses.  In  real-system  QC         
runs,  debugging  occurs  by  running  many  “shots”  (trials)  on          
real  QC  prototypes,  with  measurements  occurring  at  different         
assertion  points  on  different  runs  in  order  to  gather  the  data            
points   for   the   distributions.  

 
Challenge  #2:  Interpreting  whether  the  measurements  are        
correct  is  not  an  easy  task  for  programmers.  Even  when           
observations  or  simulations  are  available,  quantum  states  are         
in  general  high-dimensional  and  difficult  to  interpret.  This         
limits  their  usefulness  for  programmers  to  debug  misbehaving         
quantum  programs;  our  tools  use  statistical  analysis  to  guide          
debugging   by   interpreting   the   gathered   data.  

Our  solution  to  the  debugging/interpretation      
challenge  is  to  use  assertion  annotations  that  invoke  statistical          
tests  on  the  measurement  results,  in  order  to  help  programmers           
decide  if  the  results  are  consistent  with  three  types  of  states            
(see  figure  on  first  page).  Specifically,  we  use  a  chi-square           
statistical  test  to  decide  if  the  observed  states  belong  to  one  of             
classical,  superposition,  or  entangled  states.  These  states        
correspond  to  tests  for  unimodal,  uniform,  and  correlated  sets          
of  measurement  outcomes.  We  focus  our  attention  on  these          
three  types  of  states  because  they  occur  throughout  a  quantum           

program,  and  are  easier  for  programmers  to  identify.  These          
types  of  states  are  a  subset  of  the  quantum  states  that  a             
quantum   program   can   have,   but   cover   many   important   cases.  

 
Challenge  #3:  Programmers  need  guidelines  for  where  to         
put  assertions  when  debugging  quantum  programs.  For  the         
time  being,  the  task  of  coding  quantum  programs  entails          
translating  quantum  circuit  diagrams  into  program  code.  The         
state-of-the-art  in  quantum  programming  is  akin  to        
programming  classical  computers  50  years  ago:  researchers        
are  writing  quantum  programs  operation-by-operation,  on       
low-level  bits  of  quantum  information.  This  level  of  program          
abstraction  is  not  conducive  to  debugging  or  for  intelligently          
placing   our   proposed   assertions.  

One  contribution  of  our  paper  is  that  it  shows  how           
the  patterns  and  structures  inside  quantum  algorithms  guide         
programmers  to  know  where  to  place  assertions.  This  is  where           
our  broad  survey  of  quantum  algorithm  primitives,  problems,         
and  language  implementations  pays  off  in  terms  of  research          
insight  (see  table  above).  Program  patterns  common  inside         
these  algorithm  primitives,  such  as  looping  operations,  nesting         
operations,  and  mirroring  operations,  are  higher-level       
programming  abstractions  that  serve  as  guides  for  quantum         
programmers  to  know  where  to  use  the  debugging  tools.  If  the            
states  don't  match  what  the  programmer  expects,  the  statistical          
tests  help  the  programmer  zoom  in  and  find  mistakes  in  the            
program   code.  

 
Broader  context  of  quantum  program  correctness:  Our        
research  in  quantum  debugging  tools  is  an  important  and          
pragmatic  approach  to  the  problem  of  writing  correct  quantum          
programs.  Prior  proof-based  approaches  to  quantum  program        
correctness  typically  rely  on  functional  programming  language        
syntax,  in  languages  such  as  Quipper,  LIQUi|>,  Q#,  and          
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Qwire.  While  formal  approaches  are  useful,  they  are  not          
complete  on  their  own,  and  they  require  stronger  assumptions          
about  the  correct  and  noise-free  operation  of  the  underlying          
quantum  hardware.  In  contrast,  this  work’s  statistical        
assertions  are  applicable  to  debugging  both  ideal  and  noisy          
quantum  program  runs.  Furthermore,  the  assertions  can  be         
used  in  the  procedural  quantum  programming  languages        
(Qiskit,  Cirq,  Scaffold)  that  support  much  of  the  experimental          
work  today.  Just  as  in  classical  programming,  quantum         
programmers  will  rely  on  a  mix  of  pragmatic  and  formal           
techniques.  
 
Long-term  impact:  Quantum  computing  is  at  a  critical         
juncture.  After  decades  of  research  into  both  quantum         
algorithms  and  underlying  quantum  physical  devices,  quantum        
computers  are  now  at  a  size  and  reliability  where  programmers           
can  actually  run  quantum  programs.  But  quantum  algorithms         
are  unintuitive,  and  quantum  programming  languages  are  as  of          
now  too  low-level  to  provide  many  automatic  correctness         
guarantees  (such  as  libraries  of  validated  modules,  data  types          
representing  numbers,  type  checking,  and  garbage  collection)        
that  programmers  have  come  to  expect  in  classical  languages.          
Due  to  these  challenges,  researchers  have  identified  quantum         
program  debugging  to  be  one  of  the  urgent  challenges          
hindering   experimental   progress   with   quantum   computers .  2

Our  work  is  among  the  first  papers  to  study  quantum           
programming  bugs.  Among  those,  this  paper  stands  out  in  its           
detailed  examples  of  quantum  program  code  snippets,        
examples  of  how  programmers  may  make  mistakes,  results  on          
what  symptoms  those  mistakes  will  cause,  and  then  how  a           
programmer  may  use  the  observable  symptoms  to  diagnose         
the  underlying  bug.  Our  work  has  sparked  discussion  among          
quantum  computing  researchers  about  what  bugs  may  appear         
when   reproducing   common   quantum   algorithms .  3

Our  paper  is  also  notable  for  its  broad  scope.  We           
studied  a  comprehensive  set  of  quantum  algorithm  primitives,         
concrete  algorithms,  and  implementation  languages,  in  order        
to  create  a  taxonomy  of  bugs,  programming  patterns,  and          
assertions  that  are  general  enough  to  cover  those  quantum          
programs.  Our  efforts  led  to  a  paper  that  we  believe  serves  as  a              
panoramic  introduction  to  quantum  algorithms,  suitable  for        
architecture   researchers   and   curious   undergrads.  
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Code  release:  Our  research  has  been  adopted  into  two          
open-source   quantum   software   packages.  

First,  our  quantum  algorithm  benchmarks  for       
quantum  chemistry  and  Shor’s  algorithm  for  factoring  integers         
are  now  part  of  the  benchmarks  for  the  Scaffold  programming           
language.  This  algorithm  benchmark  suite  includes  other        
algorithms  that  we  have  now  debugged  and  validated,  such  as           
Grover’s  algorithm  for  database  search,  and  an  Ising  spin          
chain   model   based   on   adiabatic   quantum   computing.  

Second,  our  toolchain  for  using  statistical  tests  to         
check  on  assertions  is  now  a  pull-request  ready  for  acceptance           
into  IBM’s  Qiskit  framework,  pending  review  from  the  code          
owners.  Qiskit  is  the  world’s  most  widely-used  framework  for          
quantum  computing  tutorials  and  outreach  to  curious  students.         
As  such,  once  the  integration  is  approved,  our  assertions          
toolchain  will  likely  be  the  first  QC  debugger  that  many  new            
quantum  programmers  will  encounter,  on  a  scale  of  thousands          
of   QC   programmers   per   year.  
 
Follow-on  work:  Our  paper  has  already  been  cited  by  a  paper            4

discussing  how  a  subset  of  our  programming  patterns  and          
assertions  can  be  checked  dynamically,  without  stopping        
quantum   program   execution   or   destroying   the   quantum   state.  

The  techniques  in  that  paper  may  serve  as  a  new  form            
of  lightweight  error  correction  for  quantum  programs,  where         
some  error  correction  is  feasible  because  knowing  where  to          
assert  (classical,  superposition,  and  entangled)  states  tells  the         
quantum  computer  to  selectively  do  measurement  collapse,        
thereby  creating  an  attractor  state  needed  for  error  correction.          
That  contrasts  with  full-blown  quantum  error  correction        
without  any  knowledge  of  expected  states,  where  such  full          
quantum  error  correction  is  prohibitively  costly  in  the         
foreseeable  future  due  to  the  limited  size  and  reliability  of           
prototype   quantum   computers.  

Our  work  supports  that  follow-on  work  by  providing         
the  insight  about  the  useful  types  of  assertions,  and  by           
providing  the  quantum  algorithm  programming  patterns  that        
would   guide   the   placement   of   those   dynamic   assertions.  

 
Citation  for  Test  of  Time  award:  This  paper         

addresses  important  challenges  in  debugging  quantum  systems        
by  identifying  key  algorithm  and  program  patterns,  and  by          
proposing   and   evaluating   assertion-based   debugging   methods.  
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