
Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
Yipeng Huang and Margaret Martonosi, Princeton University

In classical computing, debugging programs is one of

the most time-consuming tasks in software development.
Successful debugging relies on software development tools
and also on the experience of the programmer. In quantum
computing (QC), researchers foresee debugging to be an even
greater challenge. In our ISCA ’19 paper , we present 1

approaches that represent some of the first-ever steps towards
debugging tools for QC software and hardware systems. The
debugging tools we propose are based on statistical tests, with
a goal of aiding programmers in building correct quantum
programs for near-term quantum computers. They can also be
used by hardware designers to assess correct operation.
Furthermore, we study a broad cross section of quantum
algorithms, in order to identify recurring quantum program
patterns and anti-patterns. These bugs and program patterns
represent common and therefore important themes in QC
debugging. They can guide the programmer to know where to
put our proposed assertions for effective debugging.

Over roughly the past two decades, researchers have
discovered hundreds of QC algorithms covering a range of
applications in chemistry, optimization, search, and
cryptography. Thus far, however, almost all of these
algorithms only exist as abstract equations and specifications,
and therefore may not have been fully checked for correctness.
For some, lucky readers may find concrete quantum circuit
diagrams among those specifications. A few dozen have
actually been fleshed-out as program code in open-source
repositories. Some of those implementations are likely correct,
but almost none have been deeply debugged until now.
Quantum programming is in its infancy.

The QC research landscape has changed rapidly. In
the past handful of years, researchers have built the first
prototype quantum computers capable of running small
quantum programs. Notably, IBM has made simulators and
small-scale quantum computers available for the public to run
code and see results. With this burgeoning interest in quantum
computing experimentation, a new and urgent challenge lies
in understanding what are quantum program bugs, and in
helping experienced and novice quantum programmers
translate those abstract algorithms into correctly functioning
quantum program code. Our ISCA ’ 19 work makes the
community’s first steps towards meeting this challenge.

1 Yipeng Huang and Margaret Martonosi. 2019. Statistical
Assertions for Validating Patterns and Finding Bugs in
Quantum Programs. In The 46th Annual International
Symposium on Computer Architecture (ISCA ’19), June
22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3307650.3322213

We started this project by studying a wide array of

quantum program benchmark implementations in several
quantum programming languages. The ISCA ’19 paper
covered important exemplar algorithms such as quantum
chemistry, Grover’s database search, and Shor’s integer
factorization. We also analyzed several programs not treated in
our paper such as optimization using a hybrid
quantum-classical algorithm, and algorithms that rely on
adiabatic evolution of quantum states. The goal was to capture
a wide variety of quantum algorithm primitives—algorithm
kernels that underlie the functionality of these algorithms and
that are widely used across many QC algorithms. These
algorithm primitives include variational optimization,
amplitude amplification, and quantum Fourier transform. The
implementations we studied span several open-source QC
programming languages such as Scaffold, Microsoft’s
ProjectQ, IBM’s Qiskit, and Google’s Cirq. The goal was to
have a broad understanding of how programmers might make
mistakes in writing QC programs, and also to understand how
different programming language features aid writing correct
code. This is akin to prior papers on programming design
patterns and parallel programming patterns.

In the process of building and analyzing the quantum
algorithm benchmarks, our paper identifies and highlights
three key difficulties in debugging quantum programs.

Challenge #1: Getting quantum debugging information is
not straightforward as in classical debugging. The first
difficulty is that programmers cannot easily examine the
values of variables of a QC program, while the program is
running. Inspecting quantum variables involves measuring and
“collapsing” the delicate quantum states inside quantum
computers. Once a quantum state is collapsed, any
observations would not be a complete description of the state
of the program. This limitation precludes the “printf”
debugging approach commonly used by programmers with
classical programs.

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs Yipeng Huang and Margaret Martonosi

 Quantum algorithm
primitives Benchmark algorithms / problems

Exhibited program patterns /
assertions for debugging

Algorithms for
near-term, noisy,
intermediate-scale
quantum computing era

Entanglement protocols for
quantum networking

Superdense coding;
Quantum teleportation

Entanglement precondition assertions
on initial conditions

Hybrid quantum-classical
variational algorithms

Quantum approximate optimization;
Variational quantum eigensolver Iterative algorithm progress checks

Algorithms for
future, fault-tolerant,
large-scale
quantum computing era

Adiabatic evolution of
quantum states Ising spin chain model Iterative algorithm progress checks

Amplitude amplification Grover’s database search Postcondition assertions that search
results satisfy criteria

Quantum Fourier transform Phase estimation; Period finding;
Shor’s integer factoring

Postcondition assertions on correct
deallocation of ancillary qubits;
Modularity; Numerical data types

Our paper addresses Challenge #1 by finding ways to

debug quantum programs using only the information about the
collapsed quantum states (see figure on first page). We
consider debugging programs in both simulated and
real-system settings. In both settings, we introduce program
instructions that tell the simulator or quantum computer to
stop operation and measure quantum states early. The
toolchain then uses multiple runs of the quantum program in
order to find the probability distribution of the measurement
outcomes from the quantum algorithm. In simulated settings,
these probability distributions are tracked as internal data
structures as the simulation progresses. In real-system QC
runs, debugging occurs by running many “shots” (trials) on
real QC prototypes, with measurements occurring at different
assertion points on different runs in order to gather the data
points for the distributions.

Challenge #2: Interpreting whether the measurements are
correct is not an easy task for programmers. Even when
observations or simulations are available, quantum states are
in general high-dimensional and difficult to interpret. This
limits their usefulness for programmers to debug misbehaving
quantum programs; our tools use statistical analysis to guide
debugging by interpreting the gathered data.

Our solution to the debugging/interpretation
challenge is to use assertion annotations that invoke statistical
tests on the measurement results, in order to help programmers
decide if the results are consistent with three types of states
(see figure on first page). Specifically, we use a chi-square
statistical test to decide if the observed states belong to one of
classical, superposition, or entangled states. These states
correspond to tests for unimodal, uniform, and correlated sets
of measurement outcomes. We focus our attention on these
three types of states because they occur throughout a quantum

program, and are easier for programmers to identify. These
types of states are a subset of the quantum states that a
quantum program can have, but cover many important cases.

Challenge #3: Programmers need guidelines for where to
put assertions when debugging quantum programs. For the
time being, the task of coding quantum programs entails
translating quantum circuit diagrams into program code. The
state-of-the-art in quantum programming is akin to
programming classical computers 50 years ago: researchers
are writing quantum programs operation-by-operation, on
low-level bits of quantum information. This level of program
abstraction is not conducive to debugging or for intelligently
placing our proposed assertions.

One contribution of our paper is that it shows how
the patterns and structures inside quantum algorithms guide
programmers to know where to place assertions. This is where
our broad survey of quantum algorithm primitives, problems,
and language implementations pays off in terms of research
insight (see table above). Program patterns common inside
these algorithm primitives, such as looping operations, nesting
operations, and mirroring operations, are higher-level
programming abstractions that serve as guides for quantum
programmers to know where to use the debugging tools. If the
states don't match what the programmer expects, the statistical
tests help the programmer zoom in and find mistakes in the
program code.

Broader context of quantum program correctness: Our
research in quantum debugging tools is an important and
pragmatic approach to the problem of writing correct quantum
programs. Prior proof-based approaches to quantum program
correctness typically rely on functional programming language
syntax, in languages such as Quipper, LIQUi|>, Q#, and

Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs Yipeng Huang and Margaret Martonosi

Qwire. While formal approaches are useful, they are not
complete on their own, and they require stronger assumptions
about the correct and noise-free operation of the underlying
quantum hardware. In contrast, this work’s statistical
assertions are applicable to debugging both ideal and noisy
quantum program runs. Furthermore, the assertions can be
used in the procedural quantum programming languages
(Qiskit, Cirq, Scaffold) that support much of the experimental
work today. Just as in classical programming, quantum
programmers will rely on a mix of pragmatic and formal
techniques.

Long-term impact: Quantum computing is at a critical
juncture. After decades of research into both quantum
algorithms and underlying quantum physical devices, quantum
computers are now at a size and reliability where programmers
can actually run quantum programs. But quantum algorithms
are unintuitive, and quantum programming languages are as of
now too low-level to provide many automatic correctness
guarantees (such as libraries of validated modules, data types
representing numbers, type checking, and garbage collection)
that programmers have come to expect in classical languages.
Due to these challenges, researchers have identified quantum
program debugging to be one of the urgent challenges
hindering experimental progress with quantum computers . 2

Our work is among the first papers to study quantum
programming bugs. Among those, this paper stands out in its
detailed examples of quantum program code snippets,
examples of how programmers may make mistakes, results on
what symptoms those mistakes will cause, and then how a
programmer may use the observable symptoms to diagnose
the underlying bug. Our work has sparked discussion among
quantum computing researchers about what bugs may appear
when reproducing common quantum algorithms . 3

Our paper is also notable for its broad scope. We
studied a comprehensive set of quantum algorithm primitives,
concrete algorithms, and implementation languages, in order
to create a taxonomy of bugs, programming patterns, and
assertions that are general enough to cover those quantum
programs. Our efforts led to a paper that we believe serves as a
panoramic introduction to quantum algorithms, suitable for
architecture researchers and curious undergrads.

2 Margaret Martonosi and Martin Roetteler. 2019. Next Steps
in Quantum Computing: Computer Science's Role. arXiv
preprint arXiv:1903.10541 (2019).
3 Robert Rand, Kesha Hietala, and Michael Hicks. 2019.
Formal Verification vs. Quantum Uncertainty. Summit on
Advances in Programming Languages, SNAPL.

Code release: Our research has been adopted into two
open-source quantum software packages.

First, our quantum algorithm benchmarks for
quantum chemistry and Shor’s algorithm for factoring integers
are now part of the benchmarks for the Scaffold programming
language. This algorithm benchmark suite includes other
algorithms that we have now debugged and validated, such as
Grover’s algorithm for database search, and an Ising spin
chain model based on adiabatic quantum computing.

Second, our toolchain for using statistical tests to
check on assertions is now a pull-request ready for acceptance
into IBM’s Qiskit framework, pending review from the code
owners. Qiskit is the world’s most widely-used framework for
quantum computing tutorials and outreach to curious students.
As such, once the integration is approved, our assertions
toolchain will likely be the first QC debugger that many new
quantum programmers will encounter, on a scale of thousands
of QC programmers per year.

Follow-on work: Our paper has already been cited by a paper 4

discussing how a subset of our programming patterns and
assertions can be checked dynamically, without stopping
quantum program execution or destroying the quantum state.

The techniques in that paper may serve as a new form
of lightweight error correction for quantum programs, where
some error correction is feasible because knowing where to
assert (classical, superposition, and entangled) states tells the
quantum computer to selectively do measurement collapse,
thereby creating an attractor state needed for error correction.
That contrasts with full-blown quantum error correction
without any knowledge of expected states, where such full
quantum error correction is prohibitively costly in the
foreseeable future due to the limited size and reliability of
prototype quantum computers.

Our work supports that follow-on work by providing
the insight about the useful types of assertions, and by
providing the quantum algorithm programming patterns that
would guide the placement of those dynamic assertions.

Citation for Test of Time award: This paper

addresses important challenges in debugging quantum systems
by identifying key algorithm and program patterns, and by
proposing and evaluating assertion-based debugging methods.

4 Huiyang Zhou and Gregory Byrd. 2019. Quantum Circuits
for Dynamic Runtime Assertions in Quantum Computation. In
IEEE Computer Architecture Letters, vol. 18, no. 2, pp.
111-114, 1 July-Dec. 2019. doi: 10.1109/LCA.2019.2935049

3

