Emerging languages and representations for quantum computing: Tensor networks

Monday October 19, 2020 Rutgers University Yipeng Huang

Significance of stabilizers and tensor networks

- Highlight connections between quantum computing semantics to other areas of computer science.
 - Turns quantum computing from an analytical, numerical field into one that has ties to algebra and topology
- Introduce these two important alternative representations for quantum computing
 - Heisenberg view (stabilizer formalism) is important in quantum error correction literature
 - Feynman view (path sums and tensor network contraction) is important in quantum circuit simulation literature

Schrödinger view of quantum computing

A tensor network

	-		q0m0 = 0>	q0m0 = 1>
q0m0 = 0>	ر0]	q0m1 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m0 = 1>	[1]	q0m1 = 1>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{-1}{\sqrt{2}}$

q0m0	q0m1	
0>	0>	$0 \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	$0 \bullet \frac{1}{\sqrt{2}} = 0$
1>	0>	$1 \bullet \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
1>	1>	$1 \bullet \frac{-1}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$

A tensor network

	-		q(=
q0m0 = 0>	[0]	q0m1 = 0>	
q0m0 = 1>	[1]	q0m1 = 1>	

	q0m0 = 0>	q0m0 = 1>
q0m1 = 0 <i>></i>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m1 = 1>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{-1}{\sqrt{2}}$

	q0m1 = 0>	q0m1 = 1>
q0m2 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m2 = 1>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{-1}{\sqrt{2}}$

 In this calculation technique, we don't form the whole state vector.

A tensor network

	-
q0m0 = 0>	ر0]
q0m0 = 1>	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

	q0m0 = 0>	q0m0 = 1>
q0m1 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m1 = 1>	$\left\lfloor \frac{1}{\sqrt{2}} \right\rfloor$	$\frac{-1}{\sqrt{2}}$

	q0m1 = 0>	q0m1 = 1>
q0m2 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m2 = 1>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{-1}{\sqrt{2}}$

q0m0	q0m1	q0m2	
0>	0>	0>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	0>	1>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	0>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	1>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{-1}{\sqrt{2}} = 0$
1>	0>	0>	$1 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{1}{2}$
1>	0>	1>	$1 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{1}{2}$
1>	1>	0>	$1 \bullet \frac{-1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{-1}{2}$
1>	1>	1>	$1 \bullet \frac{-1}{\sqrt{2}} \bullet \frac{-1}{\sqrt{2}} = \frac{1}{2}$

- In this calculation technique, we don't form the whole state vector.
- 2. Path sum for q0m2=|0> has destructive interference.

q0m0	q0m1	q0m2

A tensor network

	-		q0m0 = 0>	q0m0 = 1>
q0m0 = 0>	[0]	q0m1 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m0 = 1>	[1]	q0m1 = 1>	$\left\lfloor \frac{1}{\sqrt{2}} \right\rfloor$	$\frac{-1}{\sqrt{2}}$

	q0m1 = 0>	q0m1 = 1>
q0m2 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m2 = 1>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{-1}{\sqrt{2}}$

q0m0	q0m1	q0m2	
0>	0>	0>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	0>	1>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	0>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	1>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{-1}{\sqrt{2}} = 0$
1>	0>	0>	$1 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{1}{2}$
1>	0>	1>	$1 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{1}{2}$
1>	1>	0>	$1 \bullet \frac{-1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{-1}{2}$
1>	1>	1>	$1 \bullet \frac{-1}{\sqrt{2}} \bullet \frac{-1}{\sqrt{2}} = \frac{1}{2}$

A tensor network

- In this calculation technique, we don't form the whole state vector.
- 2. Path sum for q0m2=|0> has destructive interference.
- 3. Path sum for q0m2=|1> has constructive interference.

	-
q0m0 = 0>	ر0]
q0m0 = 1>	[1]

	q0m0 = 0>	q0m0 = 1>	
q0m1 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$	
q0m1 = 1>	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	

	q0m1 = 0>	q0m1 = 1>
q0m2 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m2 = 1>	$\left\lfloor \frac{1}{\sqrt{2}} \right\rfloor$	$\frac{-1}{\sqrt{2}}$

q0m0	q0m1	q0m2	
0>	0>	0>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	0>	1>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	0>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = 0$
0>	1>	1>	$0 \bullet \frac{1}{\sqrt{2}} \bullet \frac{-1}{\sqrt{2}} = 0$
1>	0>	0>	$1 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{1}{2}$
1>	0>	1>	$1 \bullet \frac{1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{1}{2}$
1>	1>	0>	$1 \bullet \frac{-1}{\sqrt{2}} \bullet \frac{1}{\sqrt{2}} = \frac{-1}{2}$
1>	1>	1>	$1 \bullet \frac{-1}{\sqrt{2}} \bullet \frac{-1}{\sqrt{2}} = \frac{1}{2}$

Quantum circuits are a specialized form of tensor network.

- Tensor: a data structure with rank k and dimension m.
 - Rank-0 tensor: scalar.
 - Rank-1 tensor: vector.
 - Rank-2 tensor: matrix.
 - Rank-3 tensor...
- For qubits, dimension m = 2.
 - Rank-1 tensor: a single qubit state.
 - Rank-2 tensor: a 2x2 matrix for a single-qubit gate.
 - Rank-4 tensor: a 2x2x2x2 data structure for a two-qubit gate.

A rank-1 tensor

	-
q0m0 = 0>	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
q0m0 = 1>	l ₁ J

A rank-2 tensor

	q0m0 = 0>	q0m0 = 1>
q0m1 = 0>	$\left[\frac{1}{\sqrt{2}}\right]$	$\frac{1}{\sqrt{2}}$
q0m1 = 1>	$\left\lfloor \frac{1}{\sqrt{2}} \right\rfloor$	$\frac{-1}{\sqrt{2}}$

A rank-4 tensor

		q0m1= $ 0\rangle$		q0m1= $ 1\rangle$	
		q1m1= $ 0\rangle$	q1m1= $ 1\rangle$	q1m1= $ 0\rangle$	q1m1= $ 1\rangle$
O2IO\	q1m2= $ 0\rangle$	1	0	0	0
$q0m2= 0\rangle$	q1m2= $ 1\rangle$	0	1	0	0
q0m2= 1>	q1m2= $ 0\rangle$	0	0	0	1
	q1m2= $ 1\rangle$	0	0	1	0

Tensor network contraction

- Tensor network contraction is one type of tensor-tensor multiplication. It is a generalized form of matrix multiplication.
- Merge two tensors into one. Absorb common edges. If the two tensors share a common index, sum over all possible values of that index.
- For example: contract tensor A and tensor B into tensor C.
 - Where A has rank (x+y), B has rank (y+z), C has rank (x+z)

$$C_{i_1,i_2,...,i_x,k_1,k_2,...,k_z} = \sum_{j_1,j_2,...,j_v \in \{0,...,m-1\}} A_{i_1,i_2,...,i_x,j_1,...,j_y} B_{j_1,j_2,...,j_y,k_1,...,k_z}$$

Tensor network contraction

- Tensor network contraction is one type of tensor-tensor multiplication. It is a generalized form of matrix multiplication.
- Merge two tensors into one. Absorb common edges. If the two tensors share a common index, sum over all possible values of that index.
- For example: contract tensor A and tensor B into tensor C.
 - Where A has rank (x+y), B has rank (y+z), C has rank (x+z)

$$C_{i_1,i_2,...,i_x,k_1,k_2,...,k_z} = \sum_{j_1,j_2,...,j_v \in \{0,...,m-1\}} A_{i_1,i_2,...,i_x,j_1,...,j_y} B_{j_1,j_2,...,j_y,k_1,...,k_z}$$

1 \	q0m2
$\left(\begin{array}{c} \\ \end{array} \right)$	q1m2

q0m2= $ 0\rangle$	q1m2= 0
	q1m2= 1]
$q0m2= 1\rangle$	q1m2= 0
401112- 1/	a1m2= 1

$q0m1= 0\rangle$		$q0m1= 1\rangle$		
q1m1= $ 0\rangle$	q1m1= $ 1\rangle$	q1m1= $ 0\rangle$	q1m1= $ 1\rangle$	
1	0	0	0	
0	1	0	0	
0	0	0	1	
0	0	1	0	

q0m0		\bigcap	q0m2
	q1m1		q1m2
		V	

q0m2= 0>	q1m2= 0	
q 01112- 0/	a1m2= 1	

$$\begin{array}{c} \text{q1m2=}|0\rangle \\ \text{q1m2=}|1\rangle \end{array}$$

	q0m0= $ 0\rangle$		q0m0= $ 1\rangle$	
	q1m1= $ 0\rangle$	q1m1= $ 1\rangle$	q1m1= $ 0\rangle$	q1m1= $ 1 angle$
>	$1/\sqrt{2}$	0	$1/\sqrt{2}$	0
>	0	$1/\sqrt{2}$	0	$1/\sqrt{2}$
)	0	$1/\sqrt{2}$	0	$-1/\sqrt{2}$
>	$1/\sqrt{2}$	0	$-1/\sqrt{2}$	0

Tensor network contraction order

- Contraction ordering says the order in which edges are contracted.
- To minimize computation and memory requirements, best to avoid forming large intermediate tensors.

Figure 9.4: Part of a generic tensor network, consisting of ten rank-4 tensors and four rank-1 tensors.

Figure 9.5: First strategy of contraction that results in two rank-12 tensors and four rank-1 tensors. Then contracting the two rank-12 tensors involves contracting 5 edges at once, by summing over 2⁵ terms.

Figure 9.6: Second strategy of contraction that results in five rank-6 tensors and four rank-1 tensors. Then contracting the five rank-6 tensors involves contracting from left to right 2 edges at a time, by summing over 2² terms four times.

Ding and Chong. Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum Computers.

Complexity of quantum circuit simulation via tensor network contraction

- In more detail, cost of simulating the quantum circuit is O(exp(treewidth))
- ...where else did we recently see a bound on simulation cost?

Primary Sources

- Markov and Shi. Simulating Quantum Computation by Contracting Tensor Networks. SIAM. 2008.
- Fried, Sawaya, Cao, Kivlichan, Romero, Aspuru-Guzik. qTorch: The quantum tensor contraction handler.
- Biamonte and Bergholm. Quantum Tensor Networks in a Nutshell.
 2017.
- Biamonte. Lectures on Quantum Tensor Networks: a pathway to modern diagrammatic reasoning. 2019.