
1/30

Extracting Success

Yipeng Huang

Rutgers University

November 16, 2020



2/30

Where we are in the semester

Full stack quantum computer engineering

1. Algorithms: QAOA & VQE

2. Programming languages, assertions, stabilizers

3. Google Cirq, IBM Qiskit

4. Quantum circuit simulation and quantum supremacy

5. Extracting success: quantum computer architecture

6. Prototypes: quantum computer microarchitecture

I Programming assignments (2× 25 points)

I Seminar presentations (2× 25 points)



3/30

Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?

Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints



4/30

Compiling from a high-level program to hardware

Figure: Credit: [Córcoles et al., 2020]



5/30

Compiling from a high-level program to hardware

Figure: Credit: [Ding and Chong, 2020]



6/30

Native gate set

Figure: Credit: [Alexeev et al., 2020]

I Clifford + T ISA is sensible for an error-corrected machine

I But for NISQ machine, best two-qubit gate is dependent on
native gate set



7/30

Native gate set

Figure: Credit: [Matsuura et al., 2019]



8/30

Native gate set

Figure: Credit: [Murali et al., 2019]

Two qubit gates remain dominant sources of errors.



9/30

Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?

Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints



10/30

Device topology
I ion trap qubits: fully connected topology
I superconducting qubits: arbitrary qubits cannot directly

interact; needs chain of swap gates

Figure: Credit: [Córcoles et al., 2020]



11/30

Device topology

Figure: Credit: [Li et al., 2019]

Superconducting qubits: arbitrary qubits cannot directly interact;
needs chain of swap gates



12/30

Device topology

Figure: Credit: [Tannu and Qureshi, 2019]

Superconducting qubits: arbitrary qubits cannot directly interact;
needs chain of swap gates



13/30

Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?

Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints



14/30

Hardware noise

1. Decoherence error

2. Gate error (imprecise control of single qubit, two qubit gates)

3. Measurement error

Figure: Credit: [Resch and Karpuzcu, 2019]



15/30

Hardware noise
1. Decoherence error
2. Gate error (imprecise control of single qubit, two qubit gates)
3. Measurement error

Figure: Credit: [Córcoles et al., 2020]



16/30

Hardware noise

Stochastic, uncorrelated noise

Quantum noise mixtures
(Pauli errors)

Quantum noise channels

Pauli-X type Bit flip noise Amplitude damping noise
(related to T1 time)

Pauli-Z type Phase flip noise Phase damping noise
(related to T2 time)

Combinations Symmetric / asymmetric
depolarizing noise

Generalized
amplitude damping

Simulation technique Can model as probabilistic
ensembles of state vectors

Requires density matrix
representation

Table: Summary of canonical quantum noise models.



17/30

Bit flip noise channel

|0〉 → BitFlip(0.64)→

{
P(|0〉) = 0.64

P(|1〉) = 0.36

We represent such a mixture of quantum states as a density matrix:

0.64 |0〉 〈0|+ 0.36 |1〉 〈1|

= 0.64

[
1
0

] [
1 0

]
+ 0.36

[
0
1

] [
0 1

]
= 0.64

[
1 0
0 0

]
+ 0.36

[
0 0
0 1

]
=

[
0.64 0

0 0.36

]
(Conventions from [Nielsen and Chuang, 2011, Chapter 8.3])



18/30

Density matrix representation

0.64 |0〉 〈0|+ 0.36 |1〉 〈1| =

[
0.64 0

0 0.36

]
More general representation:
ρ =

∑
j pj |ψj〉 〈ψj |



19/30

Quantum (noise) channel

A quantum channel E(ρ) acts on mixed state ρ:

E(ρ) =
∑

k EkρE
†
k



20/30

Bit flip noise channel

The bit flip channel flips the state of a qubit with probability
1− p. It has two elements:

E0 =
√
pI =

√
p

[
1 0
0 1

]
E1 =

√
1− pX =

√
p

[
0 1
1 0

]



21/30

Bit flip noise channel

The bit flip noise channel Ebitflip(0.64) acts on the |0〉 state like so:

Ebitflip(

[
1 0
0 0

]
)

=
∑

k Ek

[
1 0
0 0

]
E †

k

= 0.8

[
1 0
0 1

] [
1 0
0 0

]
0.8

[
1 0
0 1

]
+ 0.6

[
0 1
1 0

] [
1 0
0 0

]
0.6

[
0 1
1 0

]
=

[
0.64 0

0 0.36

]



22/30

Phase flip noise channel

The phase flip channel flips the phase of a qubit with probability
1− p. It has two elements:

E0 =
√
pI =

√
p

[
1 0
0 1

]
E1 =

√
1− pZ =

√
p

[
1 0
0 −1

]



23/30

Hardware noise

Quantum noise mixtures
(Pauli errors)

Quantum noise channels

Pauli-X type Bit flip noise Amplitude damping noise
(related to T1 time)

Pauli-Z type Phase flip noise Phase damping noise
(related to T2 time)

Combinations Symmetric / asymmetric
depolarizing noise

Generalized
amplitude damping

Simulation technique Can model as probabilistic
ensembles of state vectors

Requires density matrix
representation

Table: Summary of canonical quantum noise models.



24/30

Amplitude damping noise channel

The amplitude damping channel leaves |0〉 alone while
probabilistically flipping |1〉. It has two elements:

E0 =

[
1 0
0
√

1− γ

]
E1 =

[
0
√
γ

0 0

]



25/30

Hardware noise

1. Decoherence error

2. Gate error (imprecise control of single qubit, two qubit gates)

3. Measurement error

Figure: Credit: [Resch and Karpuzcu, 2019]

But what about correlated noise events?



26/30

Compiling from a high-level program to hardware

Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints

Generic strategies:

I Minimize two-qubit gates while respecting native gate set and
topology

I Minimize quantum circuit depth while completing whole
circuit

I Maximize parallelism while avoiding crosstalk noise



27/30

Parallelism constraints

Figure: Credit: [Alam et al., 2020]

Some types of gates commute, so we can move earlier or later.



28/30

Parallelism constraints

1. Amount of parallelism available in the instruction stream

2. Achievable parallelism in the control microarchitecture (”each
student gets one coaxial input”)

3. Safe parallelism despite crosstalk due to spatiotemporal and
spectral overlap



29/30

Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?

Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints



30/30

Primary sources

I [Ding and Chong, 2020, Chapters 4,6,7]

I [Córcoles et al., 2020, Section III.B]

I
[National Academies of Sciences, Engineering, and Medicine, 2019,
Chapter 6.5]

I [Martonosi and Roetteler, 2019, Chapter 6]



30/30

Alam, M., Ash-Saki, A., and Ghosh, S. (2020).
Circuit compilation methodologies for quantum approximate optimization
algorithm.
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

Alexeev, Y., Bacon, D., Brown, K. R., Calderbank, R., Carr, L. D., Chong, F. T.,
DeMarco, B., Englund, D., Farhi, E., Fefferman, B., Gorshkov, A. V., Houck, A.,
Kim, J., Kimmel, S., Lange, M., Lloyd, S., Lukin, M. D., Maslov, D., Maunz, P.,
Monroe, C., Preskill, J., Roetteler, M., Savage, M., and Thompson, J. (2020).
Quantum computer systems for scientific discovery.

Córcoles, A. D., Kandala, A., Javadi-Abhari, A., McClure, D. T., Cross, A. W.,
Temme, K., Nation, P. D., Steffen, M., and Gambetta, J. M. (2020).
Challenges and opportunities of near-term quantum computing systems.
Proceedings of the IEEE, 108(8):1338–1352.

Ding, Y. and Chong, F. T. (2020).
Quantum computer systems: Research for noisy intermediate-scale quantum
computers.
Synthesis Lectures on Computer Architecture, 15(2):1–227.

Li, G., Ding, Y., and Xie, Y. (2019).
Tackling the qubit mapping problem for nisq-era quantum devices.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1001–1014.

Martonosi, M. and Roetteler, M. (2019).
Next steps in quantum computing: Computer science’s role.



30/30

arXiv preprint arXiv:1903.10541.

Matsuura, A., Johri, S., and Hogaboam, J. (2019).
A systems perspective of quantum computing.
PhT, 72(3):40–46.

Murali, P., Linke, N. M., Martonosi, M., Abhari, A. J., Nguyen, N. H., and
Alderete, C. H. (2019).
Full-stack, real-system quantum computer studies: Architectural comparisons
and design insights.
In Proceedings of the 46th International Symposium on Computer Architecture,
ISCA ’19, page 527–540, New York, NY, USA. Association for Computing
Machinery.

National Academies of Sciences, Engineering, and Medicine (2019).
Quantum Computing: Progress and Prospects.
The National Academies Press, Washington, DC.

Nielsen, M. A. and Chuang, I. L. (2011).
Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, USA, 10th edition.

Resch, S. and Karpuzcu, U. R. (2019).
Quantum computing: An overview across the system stack.

Tannu, S. S. and Qureshi, M. K. (2019).
Not all qubits are created equal: A case for variability-aware policies for nisq-era
quantum computers.



30/30

In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, page
987–999, New York, NY, USA. Association for Computing Machinery.


