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Where we are in the semester

Full stack quantum computer engineering

1.

o e

6.

Algorithms: QAOA & VQE

Programming languages, assertions, stabilizers
Google Cirq, IBM Qiskit

Quantum circuit simulation and quantum supremacy
Extracting success: quantum computer architecture

Prototypes: quantum computer microarchitecture

» Programming assignments (2 x 25 points)

» Seminar presentations (2 x 25 points)
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Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?
Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints
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Compiling from a high-level program to hardware

Applications

‘Quantum Programming Language
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(maps program to logical qubits) |
Logical-Level Intermediate
and O i
(air)
Error-Correction Firmware
(logical qubits to physical qubits)
Physical-Level Physical
Schedulers and Optimizers QAsSM

Machine-specific
control
sequencing code

Quantum Device Pulses (specific to implementation)

Device Control Firmware

FIGURE 6.1 A generic tool flow for quantum pmgmmmmg A quantum program is implemented in a

domain-specific language (DSL) and then lated into after undergoing a series
of compiler transformations and optimizations. A quantum intermediate representation (QIR) of the
program can serve as a logical-level analog to ly code. For running on

error-corrected qubits, the compiler would link in low-level QEC libraries into the code, transforming the
logical qubit operations, to the physical operations on a numbcr of qublts The qubits of this “expanded”
quantum program are then mapped onto a specific I ing for the specific
gate operations and connectivity available. At the lowest level, the operations on physical qubits will be
generated as instructions of the quantum control processor that orchestrate the specific control pulses
(e.g., microwave or optical) required. For more detailed discussion of quantum computer software
architectures see [Chong, Frederic T., Diana Franklin, and Margaret Martonosi. "Programming languages
and compiler design for realistic quantum hardware." Nature 549, no. 7671 (2017): 180.] and [Haner,
Thomas, Damian S. Steiger, Krysta Svore, and Matthias Troyer. "A software methodology for compiling
quantum programs." Quantum Science and Technology 3, no. 2 (2018): 020501.].

Figure: Credit: [Cércoles et al., 2020]
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Compiling from a high-level program to hardware

Application Layer
Quantum Algorithm

Quantum Classical

Systems Software Layer

Quantum DSL,
Compilation,
Unitary Synthesis,
Pulse Control,
Noise Mitigation,
Error Correction

Hardware Layer

Quantum Hardware

System Controller
Qubits

Figure 4.1: Selective sharing of information allows algorithms to use limited resource in NISQ_
hardware most efficiently.
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Figure: Credit: [Ding and Chong, 2020]
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Native gate set
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FIG. 1. The rotation and controlled-NOT (CNOT) gates are an example of a universal quantum gate family when available
on all qubits, with explicit evolution (above) and quantum circuit block schematics (below). (a) The single-qubit rotation gate
R(0, ¢), with two continuous parameters § and ¢, evolves input qubit state |z) to output state |Z). (b) The CNOT (or reversible
XOR) gate on two qubits evolves two (control and target) input qubit states |z¢) and |zr) to output states |fc = x¢) and
|Zr = zc @ 1), where @ is addition modulo 2, or equivalently the XOR operation.

Figure: Credit: [Alexeev et al., 2020]

» Clifford + T ISA is sensible for an error-corrected machine

» But for NISQ machine, best two-qubit gate is dependent on
native gate set
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Native gate set

9
la,) 1

A logical controlled-NOT,
or CNOT, gate is an en-

) > lag»
tangling operation that

flips the target qubit be-
tween 1 and 0 if the con-
trol qubit is in the 1 state.

lay)
It must be decomposed "

into a sequence of native
quantum gates for the qubit technology
to perform the gate operation on the
specific qubit system. Two possible de-
compositions are shown, where RX, RY,
and RZ denote rotations around the x-, y-
and z-axes, respectively. A system per-

Figure:

formance simulation could provide met-
rics to help choose which CNOT to incor-
porate into the specific design.
Depending on the fidelity of the sin-
gle- and two-qubit gates in the circuits
and on their speed, researchers may want

Credit: [Matsuura et al

to choose only one to implement the log-
ical CNOT in the system. Depending on
the performance of the qubits available
at a particular point in the execution of
the algorithm, itis also possible to choose
a different logical CNOT sequence.

., 2019]
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Native gate set

Software
Visible Ry (6, 9) XX(x) U(1 (1)) CNOT constructed R (£m/2) cz
Uy(p, 2 with CR & 1Q R
Gates R,(D) Ux(8,0,2)
Native 1Q 2Q 1Q 2Q 1Q 2Q
— Roy(0,9) XX (x) R.(m/2) CR Re(+1/2) cz
R,(A) Ising interaction R,(D) Cross Resonance R, (D) Controlled Z
Ybtlon trapped in EM field Superconductm‘g Josephson Superconduct\qg Josephson
Junction Junction
University of Maryland IBM Rigetti

Figure 1. Hardware qubit technology, native gate set, and software-visible gate set in
the systems used in our study. Each qubit technology lends itself to a set of native gates.
For programming, vendors expose these gates in a software-visible interface or construct
composite gates with multiple native gates.

Figure: Credit: [Murali et al., 2019]

Two qubit gates remain dominant sources of errors.
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Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?
Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints
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Device topology

» ion trap qubits: fully connected topology
» superconducting qubits: arbitrary qubits cannot directly
interact; needs chain of swap gates

1

ibmagx Yorktown, Tenerife Ruschlikon, Melbourne

Austin, Tokyo

Poughkeepsie, Johannesburg Boeblingen

Fig. 1. Examples of several IBM cloud accessible devices. The top left 5-
qubit device was the first one made available via the IBM Quantum Experience
[40]. The one to the right of it was made available after including additional
entangling gates between two pairs of qubits. A 16-qubit device was made
available approximately a year after the first device. The devices in the bottom
row show three variations of 20-qubit devices available to members of the
IBM Q Network [41].

Figure: Credit: [Cércoles et al., 2020]
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Device topology
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Figure 3. (a) SWAP Gate Decomposition, (b) Physical Qubit Coupling Graph Example,
(c) Original Quantum Circuit, (d) Updated Hardware-Compliant Quantum Circuit

Figure: Credit: [Li et al., 2019]

Superconducting qubits: arbitrary qubits cannot directly interact;
needs chain of swap gates
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Device topology

& [ i { o
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Figure 3. (a) Layout of a 6-qubit quantum computer, (b)-(e) are possible routes from A to F. Note that options (b)(c)(d) have an
identical number of swaps and (e) incur higher swaps. An intelligent policy would choose one from (b)(c)(d).

Figure: Credit: [Tannu and Qureshi, 2019]

Superconducting qubits: arbitrary qubits cannot directly interact;
needs chain of swap gates
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Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?
Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints
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Hardware noise

1. Decoherence error

2. Gate error (imprecise control of single qubit, two qubit gates)

3. Measurement error

2-Qubit Gate Latency (s)

2-Qubit Gate Fidelity (7)

Mobile

Technology Coherence Time (s) 1-Qubit Gate Latency (s) 1-Qubit Gate Fidelity (%)
Ton Trap 0.2 [165] - 0.5 [169] 1.6e-6 [166] - 2-5 [169] 5.4¢-7 [166) - 2.5¢-4 [169] L 97 (169] - 99.9 [165]
7.0¢-6 [182] - 9.5¢-5 [178] | 2.0e-8 [62, 177, 180] - 1.30e-7 (78, 169] | 3.0e-8 [152) - 2.5¢-7 [75, 169] 96.5 78, 169] - 99.4 [177]
Solid State Nuclear spin 06[183] 1.12¢-4 [184] - 1.5e-4 [183] 12e-4 [185] 99.6- [184] - 99.95 [183] | 89 [186] - 96 [185]"
Solid State Electron spin 1e-33] 3.06-6 [183) - 2.3¢-5 [184] 1.2e-4 [185]° 99.4 [184] - 99.93 [183] 89 [186] - 96 [185]"
‘Quantum Dot 16 [3, 187] - de-4 [173] 1e-9 3] - 2e-8 (171 Te-7 [174] 98.6 [171] - 999 [172] 90 (171,
NMR 167 [158] 2.5e-4 [158] - 1e-3 [24] 273 [158] - 10e2 [24] | 98.74 [24] - 99.60 [158] | 98.23 [24] - 98.77 [158]

Table 1. Metrics for various quantum technologies. * Nuclear/Electron Hybrid

Figure: Credit: [Resch and Karpuzcu, 2019]
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Hardware noise
1. Decoherence error

2. Gate error (imprecise control of single qubit, two qubit gates)

3. Measurement error

CNOT Error Distributions

Tenerife (6Q, QV=4)

_ Alm a

Melbourne (14Q)

Tokyo (20Q, QV=8)

Poughkeepsie (20Q, QV=8)

Johannesburg (20Q, QV=16)

Boeblingen (20Q, QV=16)

0 1 5 10
Gate Error (%)
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Hardware noise

Stochastic, uncorrelated noise

Quantum noise mixtures

(Pauli errors)

Quantum noise channels

Pauli-X type
Pauli-Z type

Combinations

Bit flip noise
Phase flip noise

Symmetric / asymmetric
depolarizing noise

Amplitude damping noise
(related to T1 time)
Phase damping noise
(related to T2 time)
Generalized

amplitude damping

Simulation technique

Can model as probabilistic
ensembles of state vectors

Requires density matrix
representation

Table: Summary of canonical quantum noise models.
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Bit flip noise channel

P(|0)) = 0.64

0) — BitFlip(0.64) —
0 p(0-64) {qu):ose
We represent such a mixture of quantum states as a density matrix:

0.64|0)
—0.64

—

0] +0.36|1) (1]

é] [1 0] +0.36 [g] [0 1]

10 00
: 0] 036 {0 1]
_fo64 0
“ 10 036

(Conventions from [Nielsen and Chuang, 2011, Chapter 8.3])

= 0.64
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Density matrix representation

0.6410) (0] + 0.36 1) (1| = [0'64 0 ]

0 0.36

More general representation:

p =22 Pl (¥l
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Quantum (noise) channel

A quantum channel £(p) acts on mixed state p:

E(p) = oy ExpEl
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Bit flip noise channel

The bit flip channel flips the state of a qubit with probability
1 — p. It has two elements:

= VBl =g |
B = VI=pX = 3 ||
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Bit flip noise channel

The bit flip noise channel Epjtfip(0.64) acts on the |0) state like so:

Enitflip( [(1) 8] )
= >k Ex [0 0] El
_ 08 [o ﬂ [0 8] 0.8 [(1) (1)]+0.6 [(1) (ﬂ [é g] 0.6 [g é]

o640
~ |0 036
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Phase flip noise channel

The phase flip channel flips the phase of a qubit with probability
1 — p. It has two elements:

= VBl =g |
El:mzzﬁ[(l) —01]
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Hardware noise

Quantum noise mixtures

(Pauli errors)

Quantum noise channels

Pauli-X type
Pauli-Z type

Combinations

Bit flip noise
Phase flip noise

Symmetric / asymmetric
depolarizing noise

Amplitude damping noise
(related to T1 time)
Phase damping noise
(related to T2 time)
Generalized

amplitude damping

Simulation technique

Can model as probabilistic
ensembles of state vectors

Requires density matrix
representation

Table: Summary of canonical quantum noise models.
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Amplitude damping noise channel

The amplitude damping channel leaves |0) alone while
probabilistically flipping |1). It has two elements:

o [y )

-l o]
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Hardware noise

1. Decoherence error
2. Gate error (imprecise control of single qubit, two

3. Measurement error

qubit gates)

Technology Coherence Time (s) 1-Qubit Gate Latency (s) 2-Qubit Gate Latency (s) | 1-Qubit Gate Fidelity (%)
Ton Trap 0.2 [165] - 0.5 [169] 1.6¢-6 [166] - 2-5 [169] 5.4¢-7 [166) - 2.5¢-4 [169] | 9.1 [169] - 99.9999 [168]

Superconductors 7.0¢-6 [182] - 9.5¢-5 [178] | 2.0¢-8 [62, 177, 180] - 130e-7 [78, 169] | 3.0¢-8 [182) - 25¢-7 [78,169] | 98 [179]-99.92 [177] | 965 [78, 169] - 99.4 177] | NO
Solid State Nuclear spin 06 [183] 1.12e-4 [184] - 1,504 [183] 1.20-4 [185]" 99.6.- [184] - 99.95 [183] 89 [186] - 96 [185]" NO
Solid State Electron spin 1e-3 3] 3.0¢-6 [183) - 2.3¢-5 [184] 1.2¢-4 [185]° 99.4 [184] - 99.93 [183] 89 [186] - 96 [185)" NO

Quantum Dot 1e-6 [3, 187] - de-d [173] 1e-9 [3] - 28 [171] Te-7 [174] 986 [171] - 999 [172] 90 (171, NO
NMR 167 [158] 2.5e-4 [158] - 1e-3 [24] 273 [158] - 10e-2 [24] | 95.74 [2d] - 99.60 [158] | 9823 [24]-98.77 [158] | NO

Table 1. Metrics for various quantum technologies. * Nuclear/Electron Hybrid

Figure: Credit: [Resch and Karpuzcu, 2019]

But what about correlated noise events?
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Compiling from a high-level program to hardware

Extreme device/resource constraints:
1. Native gate set
2. Device topology
3. Hardware noise
4. Parallelism constraints
Generic strategies:

> Minimize two-qubit gates while respecting native gate set and
topology

» Minimize quantum circuit depth while completing whole
circuit

> Maximize parallelism while avoiding crosstalk noise
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Parallelism constraints

0 QAOA-MaxCut circuit for the problem graph: Random Approach em\on-maxcm circuit for the probiem graph: Intelligent Approach }
Layer-1 . Layer-2  Layer-3. Layer-4. Layer-5. Layer-6 Layer-1 . Layer2 . Layer3

RX(E) |-

erblem graph

H

i i :
Wz, L {rxen |-
a4
I i"' CPrASE
3

Linearly Coupled
-qubit hardware Mapping circ-2 with layer orders: layer-1]layer-2llayer-3 Mapping circ-2 with layer orders: layer-1|layer-3]layer-2 decomposition
| and initial mapping

Fig. 1. (a) A 4-node 3-Regular graph, (b) a randomly constructed QAOA-MaxCut instance (circ-1) of the 4-node graph with p = 1, (c) an optimized circuit
(circ-2) for the problem with reduced number of layers, (d) SWAP addition during circuit compilation for a target hardware with different layer orders.

Figure: Credit: [Alam et al., 2020]

Some types of gates commute, so we can move earlier or later.
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Parallelism constraints

1. Amount of parallelism available in the instruction stream

2. Achievable parallelism in the control microarchitecture ("each
student gets one coaxial input”)

3. Safe parallelism despite crosstalk due to spatiotemporal and
spectral overlap
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Compiling from a high-level program to hardware

Goals:

1. Correctness: maximizing probability of success!

2. Ease of programming?

3. Compatibility between hardware implementations?
Extreme device/resource constraints:

1. Native gate set

2. Device topology

3. Hardware noise

4. Parallelism constraints
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Primary sources

» [Ding and Chong, 2020, Chapters 4,6,7]
» [Codreoles et al., 2020, Section I11.B]

>

[National Academies of Sciences, Engineering, and Medicine, 2019,
Chapter 6.5]

» [Martonosi and Roetteler, 2019, Chapter 6]

30/30



Alam, M., Ash-Saki, A., and Ghosh, S. (2020).

Circuit compilation methodologies for quantum approximate optimization
algorithm.

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

Alexeev, Y., Bacon, D., Brown, K. R., Calderbank, R., Carr, L. D., Chong, F. T.,
DeMarco, B., Englund, D., Farhi, E., Fefferman, B., Gorshkov, A. V., Houck, A.,
Kim, J., Kimmel, S., Lange, M., Lloyd, S., Lukin, M. D., Maslov, D., Maunz, P.,
Monroe, C., Preskill, J., Roetteler, M., Savage, M., and Thompson, J. (2020).
Quantum computer systems for scientific discovery.

Céreoles, A. D., Kandala, A., Javadi-Abhari, A., McClure, D. T., Cross, A. W.,
Temme, K., Nation, P. D., Steffen, M., and Gambetta, J. M. (2020).
Challenges and opportunities of near-term quantum computing systems.
Proceedings of the IEEE, 108(8):1338-1352.

Ding, Y. and Chong, F. T. (2020).

Quantum computer systems: Research for noisy intermediate-scale quantum
computers.

Synthesis Lectures on Computer Architecture, 15(2):1-227.

Li, G., Ding, Y., and Xie, Y. (2019).

Tackling the qubit mapping problem for nisg-era quantum devices.

In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1001-1014.

Martonosi, M. and Roetteler, M. (2019).
Next steps in quantum computing: Computer science’s role.

30/30



) & = &

arXiv preprint arXiv:1903.10541.

Matsuura, A., Johri, S., and Hogaboam, J. (2019).
A systems perspective of quantum computing.
PhT, 72(3):40-46.

Murali, P., Linke, N. M., Martonosi, M., Abhari, A. J., Nguyen, N. H., and
Alderete, C. H. (2019).

Full-stack, real-system quantum computer studies: Architectural comparisons
and design insights.

In Proceedings of the 46th International Symposium on Computer Architecture,
ISCA '19, page 527-540, New York, NY, USA. Association for Computing
Machinery.

National Academies of Sciences, Engineering, and Medicine (2019).
Quantum Computing: Progress and Prospects.
The National Academies Press, Washington, DC.

Nielsen, M. A. and Chuang, |. L. (2011).
Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, USA, 10th edition.

Resch, S. and Karpuzcu, U. R. (2019).
Quantum computing: An overview across the system stack.

Tannu, S. S. and Qureshi, M. K. (2019).
Not all qubits are created equal: A case for variability-aware policies for nisq-era
quantum computers.

30/30



In Proceedings of the Twenty-Fourth International Conference on Architectural
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987-999, New York, NY, USA. Association for Computing Machinery.
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