
1/16

C Programming: structs, data structures

Yipeng Huang

Rutgers University

Feburary 4, 2021



2/16

Table of contents

Announcements
Programming assignment
Looking ahead

bstLevelOrder.c: Level order traversal of a binary search tree
Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()
Tying it together in the main() function



3/16

Programming assignment

Programming assignment

I Due in one week: 11:59pm Thursday, February 11.
I Find class’s frequently asked questions on Piazza.
I Be careful not to disclose significant portions of your assignment code on

Piazza.
I Goal today, Thursday: Work though examples of building a binary search tree

and a queue using structs and pointers. Everything you need for part 4,
balanced, and part 5, bstReverseOrder.



4/16

Looking ahead

Lecture plan

1. Tuesday, 2/9: Common mistakes in programming, debugging techniques.
2. Thursday, 2/11: Data representation of integers.
3. Tuesday, 2/16: Data representation of floating point numbers.

Reading assignment

I Computer Systems: A Programmer’s Perspective Chapter 2.



5/16

Table of contents

Announcements
Programming assignment
Looking ahead

bstLevelOrder.c: Level order traversal of a binary search tree
Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()
Tying it together in the main() function



6/16

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.



7/16

Binary search tree level order traversal

Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.



8/16

Binary search tree traversal orders

Breadth-first
I For example: level-order.
I Needs a queue (first in first out).
I Today in class we will build a BST and a Queue.

Depth-first

I For example: in-order traversal, reverse-order traversal.
I Needs a stack (first in last out).
I DEEP question: where is the stack in your recursive implementation in

bstReverseOrder.c?



9/16

typedef

Why types are important

I Natural language has nouns, verbs, adjectives, adverbs.
I Type safety.
I Interpretation vs. compilation.



10/16

struct

arrays vs structs

I Arrays group data of the same type. The [] operator accesses array elements.
I Structs group data of different type. The . operator accesses struct elements.

These are equivalent; the latter is shorthand:
BSTNode* root;

I (*root).key = key;

I root->key = key;

When structs are passed to functions, they are passed BY VALUE.



11/16

BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {

int key;
BSTNode* l_child; // nodes with smaller key will be in left subtree
BSTNode* r_child; // nodes with larger key will be in right subtree

};



12/16

Let’s implement insert() and delete()

I Recursive implementations for insert() and delete().
I Note the matching malloc() in insert() and free() in delete().
I Tricky part: knowing what to pass as parameters and to return.
I Think: where should the data live, and how long should it persist?



13/16

QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {

BSTNode* data;
QueueNode* next; // pointer to next node in linked list

};
typedef struct Queue {

QueueNode* front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue

} Queue;



14/16

Let’s implement enqueue()

https://visualgo.net/en/queue

I First, consider if queue is empty.
I Then, consider if queue is not empty. Only need to touch back (tail) of the

queue.

https://visualgo.net/en/queue


15/16

Let’s implement dequeue()

https://visualgo.net/en/queue

I First, consider if queue will become empty.
I Then, consider if queue will not not empty. Only need to touch front (head) of

the queue.
Subtle point: why are the function signatures (return, parameters) of enqueue()
and dequeue() the way they are?

https://visualgo.net/en/queue


16/16

Tying it together in the main() function


	Announcements
	Programming assignment
	Looking ahead

	bstLevelOrder.c: Level order traversal of a binary search tree
	Level order traversal of a binary search tree
	Binary search tree: BSTNode, insert(), delete()
	Linked list implementation of a queue: QueueNode, Queue, enqueue(), dequeue()
	Tying it together in the main() function


