
1/26

Data Representation: bits, bytes, integers

Yipeng Huang

Rutgers University

Feburary 11, 2021

2/26

Table of contents

Announcements
Programming assignments
Looking ahead

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Bitwise operations
Representing characters

Integers and basic arithmetic
Representing negative and signed integers

3/26

Programming assignments

Programming assignment 1

I Due date extended to: 11:59pm Monday, February 15.
I Take good advantage of this opportunity.
I Familiarity with C is a vital foundation for this class and future classes.
I Code review discussion during week of February 22 - February 26.

Programming assignment 2

I Released later today Thursday, February 11.
I Due after two weeks: February 25.
I Same techniques in programming C.
I Review of graph algorithms.

4/26

Looking ahead

Lecture plan

1. Today, Thursday, 2/11: Data representation of integers.
2. Tuesday, 2/16: Data representation of floating point numbers.
3. Thursday, 2/18: Data representation of floating point numbers.

Reading assignment

I Computer Systems: A Programmer’s Perspective Chapter 2.

5/26

Table of contents

Announcements
Programming assignments
Looking ahead

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Bitwise operations
Representing characters

Integers and basic arithmetic
Representing negative and signed integers

6/26

Why binary

Figure:

7/26

Why binary

Figure: Rahul Sarpeshkar. Analog Versus Digital: Extrapolating from Electronics to
Neurobiology. 1998.

8/26

Why binary

Digital encodings
Each doubling of either precision or range only needs one additional bit.

Analog encodings
Each doubling of either precision or range needs doubling of either area or power.

9/26

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal
0 0b0000 0o0 0x0
1 0b0001 0o1 0x1
2 0b0010 0o2 0x2
3 0b0011 0o3 0x3
4 0b0100 0o4 0x4
5 0b0101 0o5 0x5
6 0b0110 0o6 0x6
7 0b0111 0o7 0x7

Decimal Binary Octal Hexadecimal
8 0b1000 0o10 0x8
9 0b1001 0o11 0x9

10 0b1010 0o12 0xA
11 0b1011 0o13 0xB
12 0b1100 0o14 0xC
13 0b1101 0o15 0xD
14 0b1110 0o16 0xE
15 0b1111 0o17 0xF

In C, format specifiers for printf() and fscanf():
1. decimal: ’%d’
2. binary: none
3. octal: ’%o’
4. hexadecimal: ’%x’

10/26

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0b0 to 0b11111111
3. octal: 0 to 0o377 (group by 3 bits)
4. hexadecimal: 0x00 to 0xFF (group by 4 bits)

11/26

Bitwise operations

Why are bitwise operations important?

I Network and UNIX settings using bit masks (e.g., umask)
I Hardware and microcontroller programming (e.g., Arduinos)
I Instruction set architecture encodings (e.g., ARM, x86)

12/26

Bitwise operations

˜: bitwise NOT
unsigned char a = 128

a = 0b1000_0000
˜a = ˜0b1000_0000

= 0b0111_1111
= 127

b ˜ b
0 1
1 0

13/26

Bitwise operations

&: bitwise AND

3&1 = 0b11&0b01
= 0b01
= 1

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

14/26

Bitwise operations

|: bitwise OR

3|1 = 0b11|0b01
= 0b11
= 3

2|1 = 0b10|0b01
= 0b11
= 3

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

15/26

Bitwise operations

ˆ: bitwise XOR

3 ∧ 1 = 0b11 ∧ 0b01
= 0b10
= 2

a b a ˆ b
0 0 0
0 1 1
1 0 1
1 1 0

16/26

Don’t confuse bitwise operators with logical operators

Bitwise operators

I ˜
I &
I |
I ˆ

Logical operators

I !
I &&
I ||
I != (for bool type)

17/26

Representing characters

Figure: ASCII character set. Image credit Wikimedia

18/26

Table of contents

Announcements
Programming assignments
Looking ahead

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Bitwise operations
Representing characters

Integers and basic arithmetic
Representing negative and signed integers

19/26

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1’s complement
3. 2’s complement

20/26

Representing negative and signed integers

Sign magnitude
Flip leading bit.

21/26

Representing negative and signed integers

1’s complement

I Flip all bits
I Addition in 1’s complement is sound
I In this encoding there are 2 encodings for 0
I -0: 0b1111
I +0: 0b0000

22/26

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I what is the most positive value you can represent? 127
I what is the most negative value you can represent? -128
I how to represent -1? 11111111
I how to represent -2? 11111110

23/26

Representing negative and signed integers

2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I MSB: 1 for negative
I Take the 1’s complement number + 1
I Most important; good properties for digital logic

24/26

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

25/26

Importance of paying attention to limits of encoding

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

0
2
4
6
8

10
12
14
16

Unsigned addition (4-bit word)

Normal

Overflow

Figure: Image credit: CS:APP

26/26

Importance of paying attention to limits of encoding

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8
-6
-4
-2
0
2
4
6
8

Two's complement addition (4-bit word)

Normal

Positive
overflow

Negative
overflow

Figure: Image credit: CS:APP

	Announcements
	Programming assignments
	Looking ahead

	Bits and bytes
	Why binary
	Decimal, binary, octal, and hexadecimal
	Bitwise operations
	Representing characters

	Integers and basic arithmetic
	Representing negative and signed integers

