Data Representation: floating point.

Yipeng Huang

Rutgers University

Feburary 18, 2021

◆□▶ < 圖▶ < 圖▶ < 圖▶ < 圖▶ < 圖 < 의 < 0 < 1/29</p>

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Looking ahead

Class plan

- 1. Today, Thursday, 2/18: Floats.
- 2. 2/18-2/22: Quiz 5. Weekly short quiz on bits, bytes, integers.
- 3. Tuesday, 2/23: Floats / rounding. Introduction to the software-hardware interface.

4. Thursday, 2/25: Programming assignment 3: data representations.

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Unsigned fixed-point binary for fractions

Figure: Fractional binary. Image credit CS:APP

Unsigned fixed-point binary for fractions

unsigned fixed-point char example	weight in decimal
1000.0000	8
0100.0000	4
0010.0000	2
0001.0000	1
0000.1000	0.5
0000.0100	0.25
0000.0010	0.125
0000.0001	0.0625

Table: Weight of each bit in an example fixed-point binary number

▶ $.625 = .5 + .125 = 0000.1010_2$

▶ $1001.1000_2 = 9 + .5 = 9.5$

Limitations of fixed-point

- Can only represent numbers of the form $x/2^k$
- Cannot represent numbers with very large magnitude (great range) or very small magnitude (great precision)

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Floating point numbers

Avogadro's number $+6.02214 \times 10^{23} mol^{-1}$

Scientific notation

- sign
- mantissa or significand
- exponent

0.602214 * 10^24 60.2214 * 10^22 602.214 * 10^21

Floating point numbers

Before 1985

- 1. Many floating point systems.
- 2. Specialized machines such as Cray supercomputers.
- 3. Some machines with specialized floating point have had to be kept alive to support legacy software.

After 1985

- 1. IEEE Standard 754.
- 2. A floating point standard designed for good numerical properties.
- 3. Found in almost every computer today, except for tiniest microcontrollers.

Recent

- 1. Need for both lower precision and higher range floating point numbers.
- 2. Machine learning / neural networks. Low-precision tensor network processors.

Floats and doubles

Single precision		
31	30 23	22 0
S	exp	frac

Do	Double precision			
63	62 52	2.51 32		
s	exp	frac (51:32)		
31		0		
	frac (31:0)			

Figure: The two standard formats for floating point data types. Image credit CS:APP

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ � @ 11/29

Floats and doubles

property	float	double
total bits	32	64
s bit	1	1
exp bits	8	11
frac bits	23	52
C printf() format specifier	''%f''	"%lf"

Table: Properties of floats and doubles

The IEEE 754 number line

Figure: Full picture of number line for floating point values. Image credit CS:APP

Figure: Zoomed in number line for floating point values. Image credit CS:APP

(ロ) (四) (三) (三) (三) (13/29)

Different cases for floating point numbers

Value of the floating point number = $(-1)^s \times M \times 2^E$

- ► *E* is encoded the exp field
- ► *M* is encoded the frac field

1. Normalized			
s ≠0&≠255	f		
2. Denormalized			
<i>s</i> 0 0 0 0 0 0 0 0	f		
3a. Infinity			
s 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3b. NaN			
s 1 1 1 1 1 1 1 1 1	≠ 0		

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers

Two different cases we need to consider for the encoding of E, M (14/2)

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Normalized: exp field

For normalized numbers, $0 < \exp < 2^k - 1$

exp is a k-bit unsigned integer

Bias

- need a bias to represent negative exponents
- ▶ bias = $2^{k-1} 1$
- bias is the k-bit unsigned integer: 011..111

For normalized numbers, E = exp-bias

In other words, exp = E+bias

property	float	double
k	8	11
bias	127	1023
smallest E (greatest precision)	-126	-1022
largest E (greatest range)	127	1023

Table: Summary of normalized exp field

Normalized: frac field

M = 1.frac

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 17/29

Normalized: example

▶ 12.375 to single-precisionfloating point 12.375 = 8+4+0+0+0+0.25+0.125

(日) (同) (三) (三) (三) (18/29)

- sign is positive so s=0
- ▶ binary is 1100.011₂
- in other words it is $1.100011_2 \times 2^3$
- $\exp = E + bias = 3 + 127 = 130 = 1000_{-}0010_{2}$
- ▶ M = 1.100011₂ = 1.frac
- ▶ frac = 100011

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

The IEEE 754 number line

Figure: Full picture of number line for floating point values. Image credit CS:APP

Figure: Zoomed in number line for floating point values. Image credit CS:APP

(ロ)、(四)、(三)、(三)、(三)、(20/29)

Denormalized: exp field

For denormalized numbers, exp = 0

Bias

- need a bias to represent negative exponents
- ▶ bias = $2^{k-1} 1$
- bias is the k-bit unsigned integer: 011..111

For denormalized numbers, E = 1-bias

property	float	double
k	8	11
bias	127	1023
Ε	-126	-1022

Table: Summary of denormalized exp field

Denormalized: frac field

M = 0.frac value represented leading with 0

Denormalized: examples

◆□ → ◆ □ → ◆ Ξ → ▲ Ξ → ○ Q ○ 23/29

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Floats: Special cases

number class	when it arises	exp field	frac field
+0 / -0 +infinity / -infinity NaN not-a-number	overflow or division by 0 illegal ops. such as $\sqrt{-1}$, inf-inf, inf*0	$egin{array}{c} 0 \ 2^k-1 \ 2^k-1 \ 2^k-1 \end{array}$	0 0 non-0

Table: Summary of special cases

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Floats: Properties

fp add is not associattive

Announcements

Fractions and fixed point representation

Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases Floats: Properties

Floats: Summary

	normalized	denormalized
value of number	$(-1)^s imes M imes 2^E$	$(-1)^s imes M imes 2^E$
E	E = exp-bias	E = -bias + 1
bias	$2^{k-1} - 1$	$2^{k-1} - 1$
exp	$0 < exp < (2^k - 1)$	exp = 0
Ň	M = 1.frac	M = 0.frac
	M has implied leading 1	M has leading 0
	greater range large magnitude numbers denser near origin	greater precision small magnitude numbers evenly spaced

Table: Summary of normalized and denormalized numbers