Assembly: Introduction.

Yipeng Huang

Rutgers University

February 23, 2021

< □ > < □ > < Ξ > < Ξ > < Ξ > ○ Q ⁽²⁾ 1/25

Table of contents

Announcements

Floats: Review

Normalized: exp field Normalized: frac field Normalized/denormalized Special cases

Floats: Mastery

Normalized number bitstring to real number it represents Floating point multiplication Properties of floating point

Instruction set architectures

why are instruction set architectures important 8-bit vs. 16-bit. vs. 32-bit vs. 64-bit CISC vs. RISC

Looking ahead

Class plan

- 1. Today, Tuesday, 2/23: Bits to oats. Introduction to the software-hardware interface.
- 2. Reading assignment for next four weeks: CS:APP Chapter 3.
- 3. Thursday, 2/25: Programming Assignment 3 on bits, bytes, integers, oats out.
- 4. Monday, 3/1: Programming Assignment 2 due. Be sure to test on ilab, "make clean". Quiz 6 on oating point trickiness out.

Table of contents

Announcements

Floats: Review

Normalized: exp eld Normalized: frac eld Normalized/denormalized Special cases

Floats: Mastery

Normalized number bitstring to real number it represents Floating point multiplication Properties of oating point

Instruction set architectures

why are instruction set architectures important 8-bit vs. 16-bit. vs. 32-bit vs. 64-bit CISC vs. RISC

Floating point numbers

Avogadro's number

+ 6:02214 10²³ mol ¹

Scienti c notation

- l sign
- I mantissa or signi cand

(ロ)、(型)、(E)、(E)、 E) の(で 5/25)

l exponent

Floats and doubles

Figure: The two standard formats for oating point data types. Image credit CS:APP

Floats and doubles

property	oat	double
total bits	32	64
s bit	1	1
exp bits	8	11
frac bits	23	52
C printf() format speci er	"%f"	"%lf"

Table: Properties of oats and doubles

The IEEE 754 number line

Figure: Full picture of number line for oating point values. Image credit CS:APP

Figure: Zoomed in number line for oating point values. Image credit CS:APP

Different cases for oating point numbers

Value of the oating point number = $(1)^{s}$ M 2^{E}

- E is encoded the exp eld
- M is encoded the frac eld

Figure: Different cases within a oating point format. Image credit CS:APP

Normalized and denormalized numbers

Two different cases we need to consider for the encoding of E, M

Normalized: exp eld

For normalized numbers, $0 < \exp < 2^k$ 1

l exp is a k-bit unsigned integer

Bias

- I need a bias to represent negative exponents
- bias = 2^{k-1} 1
- bias is the k-bit unsigned integer: 011..111

For normalized numbers, E = exp-bias

In other words, exp = E+bias

property	oat	double	
k	8	11	
bias	127	1023	
smallest E (greatest precision)	-126	-1022	
largest E (greatest range)	127	1023	

Table: Summary of normalized exp eld

Normalized: frac eld

M = 1.frac

Floats: Summary

	normalized	denormalized	
value of number	(1) ^s M2 ^E E – exp-bias	(1) ^s M 2 ^E E – -bias + 1	
bias	2^{k-1} 1	2^{k-1} 1	
exp	0 < exp< (2 ^k 1)	exp= 0	
Μ	M = 1.frac	M = 0.frac	
	M has implied leading 1	M has leading 0	
	greater range large magnitude numbers denser near origin	greater precision small magnitude numbers evenly spaced	

Table: Summary of normalized and denormalized numbers

number class	when it arises	exp	eld	frac eld
+0 / -0 +in nity / -in nity NaN not-a-number	over ow or division by 0 illegal ops. such as 1 , inf-inf, inf*0	0 2 ^k 2 ^k	1 1	0 0 non-0

Table: Summary of special cases

Table of contents

Announcements

Floats: Review

Normalized: exp eld Normalized: frac eld Normalized/denormalized Special cases

Floats: Mastery

Normalized number bitstring to real number it represents Floating point multiplication Properties of oating point

Instruction set architectures

why are instruction set architectures important 8-bit vs. 16-bit. vs. 32-bit vs. 64-bit CISC vs. RISC

Normalized number bitstring to real number it represents

- Tiny FP: 1-bit s, 4-bit exp, 3-bit frac
- What does this encode: 1_1001_101
- s=1, so positive? negative?
- $exp = 1001_2$
- bias = 2^{k-1} $1 = 2^{4-1}$ 1 = 7
- E = exp-bias =
- $frac = 101_2$
- M = 1.frac = $1:101_2$

How to multiply scienti c notation?

Recall: $\log(x \ y) = \log(x) + \log(y)$

Floating point multiplication

Properties of oating point

<□▶<⊕▶<\\ 18/25

Properties of oating point

<□▶<⊕▶<\\ 19/25

Table of contents

Announcements

Floats: Review

Normalized: exp eld Normalized: frac eld Normalized/denormalized Special cases

Floats: Mastery

Normalized number bitstring to real number it represents Floating point multiplication Properties of oating point

Instruction set architectures

why are instruction set architectures important 8-bit vs. 16-bit. vs. 32-bit vs. 64-bit CISC vs. RISC

Computer organization Layer cake

- Society
- Human beings
- Applications
- Algorithms
- High-level programming languages
- Interpreters
- Low-level programming languages
- Compilers
- Architectures
- Microarchitectures
- Sequential/combinational logic

- I Transistors
- Semiconductors
- Materials science

why are instruction set architectures important

Interface between computer science and electrical and computer engineering

- Software is varied, changes
- Hardware is standardized, static

Computer architect Fred Brooks and the IBM 360

- IBM was selling computers with different capacities,
- Compile once, and can run software on all IBM machines.

(ロ)、(同)、(E)、(E)、(E)、(O)(C) 22/25

- Backward compatibility.
- An in uential idea.

CISC vs. RISC

Complex instruction set computer

- Intel and AMD
- Have an extensive and complex set of instructions
- For example: x86's extensions: x87, IA-32, x86-64, MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.2, SSE5, AES-NI, CLMUL, RDRAND, SHA, MPX, SGX, XOP, F16C, ADX, BMI, FMA, AVX, AVX2, AVX512, VT-x, VT-d, AMD-V, AMD-Vi, TSX, ASF
- Can license Intel's compilers to extract performance
- Secret: inside the processor, they break it down to more elementary instructions

CISC vs. RISC

Reduced instruction set computer

- MIPS, ARM, RISC-V (can find Patterson and Hennessy Computer Organization and Design textbook in each of these versions), an PowerPC
- Have a relatively simple set of instructions
- For example: ARM's extensions: SVE;SVE2;TME; All mandatory: Thumb-2, Neon, VFPv4-D16, VFPv4 Obsolete: Jazelle

ARM: smartphones, Apple ARM M1 Mac