
1/14

Assembly: Arithmetic operations and control flow.

Yipeng Huang

Rutgers University

March 4, 2021



2/14

Table of contents

Announcements

MOV instruction sign extension

Arithmetic instructions
Shift operations
Bitwise operations
Integer arithmetic operations
Load effective address

Control flow



3/14

Looking ahead

Class plan

1. Thursday, 3/4: Assembly arithmetic operations and control flow.
2. Code review session for PA2 is the week of 3/8 - 3/12. TAs will take

attendance to assign participation points.
3. Reading assignment for next three weeks: CS:APP Chapter 3.
4. Programming Assignment 3 on bits, bytes, integers, floats out. Due Monday

March 22.



4/14

Programming Assignment 3: binSub

I PA3 is structured in terms of difficulty similarly to PA1 and PA2.
I The assignment rewards you for starting early.
I Use Piazza; We rely on it to gauge what needs further explanation.
I Later parts (parts 4 and 5) are more open-ended.



5/14

Table of contents

Announcements

MOV instruction sign extension

Arithmetic instructions
Shift operations
Bitwise operations
Integer arithmetic operations
Load effective address

Control flow



6/14

Sign extension due to unsigned and signed data types
Converting to a data type with more bits

1 unsigned short uc_to_us (
2 unsigned char input
3 ) {
4 return input;
5 }

1 signed short sc_to_ss (
2 signed char input
3 ) {
4 return input;
5 }

255 = 1111_11112

= 0000_0000_1111_11112

= 255

127 = 0111_11112

= 0000_0000_0111_11112

= 127

−128 = 1000_00002

= 1111_1111_1000_00002

= −128



7/14

Sign extension due to unsigned and signed data types
Converting to a data type with more bits

1 unsigned short uc_to_us (
2 unsigned char input
3 ) {
4 return input;
5 }

1 signed short sc_to_ss (
2 signed char input
3 ) {
4 return input;
5 }

function signature assembly code

unsigned short uc_to_us ( unsigned char input ); movzbl %dil, %eax
signed short uc_to_ss ( unsigned char input ); movzbl %dil, %eax
unsigned short sc_to_us ( signed char input ); movsbw %dil, %ax

signed short sc_to_ss ( signed char input ); movsbw %dil, %ax

I movz: zero extension in the MSBs
I movs: signed extension in the MSBs



8/14

Table of contents

Announcements

MOV instruction sign extension

Arithmetic instructions
Shift operations
Bitwise operations
Integer arithmetic operations
Load effective address

Control flow



9/14

Left shift operation

1 unsigned long sl_ul (
2 unsigned long in0,
3 unsigned long in1
4 ) {
5 return in0<<in1;
6 }

1 signed long sl_sl (
2 signed long in0,
3 signed long in1
4 ) {
5 return in0<<in1;
6 }

Both C code functions above translate to
the assembly on the right.

sl_ul:
sl_sl:

movq %rdi, %rax
movb %sil, %cl
salq %cl, %rax
ret

Explanation

I movq: in0→ %rdi→ %rax
I movb: in1→ %sil→ %cl
I salq src,dest:

(dest << src)→ dest
I Why only use movb for in1?



10/14

Right shift operation

Right shift of unsigned types yields logical (zero-filled) right shift

1 unsigned long sr_ul (
2 unsigned long in0,
3 unsigned long in1
4 ) {
5 return in0>>in1;
6 }

sr_ul:
movq %rdi, %rax
movb %sil, %cl
shrq %cl, %rax
ret

Right shift of signed types yields arithmetic (sign-extended) right shift

1 signed long sr_sl (
2 signed long in0,
3 signed long in1
4 ) {
5 return in0>>in1;
6 }

sr_sl:
movq %rdi, %rax
movb %sil, %cl
sarq %cl, %rax
ret



11/14

Bitwise operations

Assembly instruction Instruction effect

notq dest ∼ dest→ dest
andq src,dest src&dest→ dest
orq src,dest src|dest→ dest
xorq src,dest src ∧ dest→ dest



12/14

Integer arithmetic operations

Assembly instruction Instruction effect

incq dest dest + 1→ dest
decq dest dest− 1→ dest
negq dest −dest→ dest
addq src,dest src + dest→ dest
subq src,dest src− dest→ dest
imulq src,dest src× dest→ dest



13/14

Load effective address

1 long * leaq (
2 long * ptr, long index
3 ) {
4 return &ptr[index+1];
5 }

1 long mulAdd (
2 long base, long index
3 ) {
4 return base+index*8+8;
5 }

Both C code functions above translate to
the assembly on the right.

leaq:
mulAdd:

leaq 8(%rdi,%rsi,8), %rax
ret

Explanation

I leaq src,dest takes the effective
address of the memory (index,
displacement) expression of src and
puts it in dest.

I leaq has shorter latency (takes
fewer CPU cycles) than imulq, so
GCC will use leaq whenever it can
to calculate expressions like
y + ax + b.



14/14

Table of contents

Announcements

MOV instruction sign extension

Arithmetic instructions
Shift operations
Bitwise operations
Integer arithmetic operations
Load effective address

Control flow


	Announcements
	MOV instruction sign extension
	Arithmetic instructions
	Shift operations
	Bitwise operations
	Integer arithmetic operations
	Load effective address

	Control flow

