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Looking ahead

Class plan

1. Thursday, 3/4: Assembly arithmetic operations and control flow.
2. Code review session for PA2 is the week of 3/8 - 3/12. TAs will take

attendance to assign participation points.
3. Reading assignment for next three weeks: CS:APP Chapter 3.
4. Programming Assignment 3 on bits, bytes, integers, floats out. Due Monday

March 22.
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Programming Assignment 3: binSub

I PA3 is structured in terms of difficulty similarly to PA1 and PA2.
I The assignment rewards you for starting early.
I Use Piazza; We rely on it to gauge what needs further explanation.
I Later parts (parts 4 and 5) are more open-ended.
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Sign extension due to unsigned and signed data types
Converting to a data type with more bits

1 unsigned short uc_to_us (
2 unsigned char input
3 ) {
4 return input;
5 }

1 signed short sc_to_ss (
2 signed char input
3 ) {
4 return input;
5 }

255 = 1111_11112

= 0000_0000_1111_11112

= 255

127 = 0111_11112

= 0000_0000_0111_11112

= 127

−128 = 1000_00002

= 1111_1111_1000_00002

= −128
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Sign extension due to unsigned and signed data types
Converting to a data type with more bits

1 unsigned short uc_to_us (
2 unsigned char input
3 ) {
4 return input;
5 }

1 signed short sc_to_ss (
2 signed char input
3 ) {
4 return input;
5 }

function signature assembly code

unsigned short uc_to_us ( unsigned char input ); movzbl %dil, %eax
signed short uc_to_ss ( unsigned char input ); movzbl %dil, %eax
unsigned short sc_to_us ( signed char input ); movsbw %dil, %ax

signed short sc_to_ss ( signed char input ); movsbw %dil, %ax

I movz: zero extension in the MSBs
I movs: signed extension in the MSBs
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Left shift operation

1 unsigned long sl_ul (
2 unsigned long in0,
3 unsigned long in1
4 ) {
5 return in0<<in1;
6 }

1 signed long sl_sl (
2 signed long in0,
3 signed long in1
4 ) {
5 return in0<<in1;
6 }

Both C code functions above translate to
the assembly on the right.

sl_ul:
sl_sl:

movq %rdi, %rax
movb %sil, %cl
salq %cl, %rax
ret

Explanation

I movq: in0→ %rdi→ %rax
I movb: in1→ %sil→ %cl
I salq src,dest:

(dest << src)→ dest
I Why only use movb for in1?
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Right shift operation

Right shift of unsigned types yields logical (zero-filled) right shift

1 unsigned long sr_ul (
2 unsigned long in0,
3 unsigned long in1
4 ) {
5 return in0>>in1;
6 }

sr_ul:
movq %rdi, %rax
movb %sil, %cl
shrq %cl, %rax
ret

Right shift of signed types yields arithmetic (sign-extended) right shift

1 signed long sr_sl (
2 signed long in0,
3 signed long in1
4 ) {
5 return in0>>in1;
6 }

sr_sl:
movq %rdi, %rax
movb %sil, %cl
sarq %cl, %rax
ret
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Bitwise operations

Assembly instruction Instruction effect

notq dest ∼ dest→ dest
andq src,dest src&dest→ dest
orq src,dest src|dest→ dest
xorq src,dest src ∧ dest→ dest
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Integer arithmetic operations

Assembly instruction Instruction effect

incq dest dest + 1→ dest
decq dest dest− 1→ dest
negq dest −dest→ dest
addq src,dest src + dest→ dest
subq src,dest src− dest→ dest
imulq src,dest src× dest→ dest
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Load effective address

1 long * leaq (
2 long * ptr, long index
3 ) {
4 return &ptr[index+1];
5 }

1 long mulAdd (
2 long base, long index
3 ) {
4 return base+index*8+8;
5 }

Both C code functions above translate to
the assembly on the right.

leaq:
mulAdd:

leaq 8(%rdi,%rsi,8), %rax
ret

Explanation

I leaq src,dest takes the effective
address of the memory (index,
displacement) expression of src and
puts it in dest.

I leaq has shorter latency (takes
fewer CPU cycles) than imulq, so
GCC will use leaq whenever it can
to calculate expressions like
y + ax + b.
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