
1/18

Assembly: Control flow and loops.

Yipeng Huang

Rutgers University

March 9, 2021



2/18

Table of contents

Announcements

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Conditional move statements



3/18

Looking ahead

Class plan

1. PA2 grades released last night. Contact TAs Prince and Azita for questions
and concerns.

2. Code review session for PA2 ongoing this week. TAs will take attendance to
assign participation points.

3. Provide mid-semester course feedback at:
http://sirs.ctaar.rutgers.edu/blue

4. Today, Tuesday, 3/9: Assembly control flow and loops.
5. Thursday, 3/11: Assembly loops and function calls.
6. Reading assignment for next two weeks: CS:APP Chapter 3.
7. Programming Assignment 3 on bits, bytes, integers, floats out. Due Monday

March 22.

http://sirs.ctaar.rutgers.edu/blue


4/18

Programming Assignment 3: binToFloat
General reminders
I PA3 is structured in terms of difficulty similarly to PA1 and PA2.
I The assignment rewards you for starting early.
I Use Piazza; We rely on it to gauge what needs further explanation.
I Later parts (parts 4 and 5) are more open-ended.

binToFloat
I How to read in the characters.
I How to accumulate the representation in the binary number.
I You are not allowed to use pointer casting to directly convert binary

representation to float.
I You may find the %e or %E printf format specifiers useful at some point in

PA3. https://www.cplusplus.com/reference/cstdio/printf/
I How to shift and mask for the sign bit.

https://www.cplusplus.com/reference/cstdio/printf/


5/18

Table of contents

Announcements

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Conditional move statements



6/18

What is control flow?

Control flow is:
I Change in the sequential execution of instructions.
I Change in the steady incrementation of the program counter / instruction

pointer (%rip register).

Control primitives in assembly build up to enable C and Java control
statements:
I if-else statements
I do-while loops
I while loops
I for loops
I switch statements



7/18

Condition codes

Carnegie Mellon 

12 Bryant	
  and	
  O’Hallaron,	
  Computer	
  Systems:	
  A	
  Programmer’s	
  Perspec�ve,	
  Third	
  Edi�on	
  

CPU	
  

Assembly/Machine	
  Code	
  View	
  

Programmer-­‐Visible	
  State	
  
§  PC:	
  Program	
  counter	
  

§  Address	
  of	
  next	
  instruc�on	
  
§  Called	
  “RIP”	
  (x86-­‐64)	
  

§  Register	
  file	
  
§  Heavily	
  used	
  program	
  data	
  

§  Condi�on	
  codes	
  
§  Store	
  status	
  informa�on	
  about	
  most	
  
recent	
  arithme�c	
  or	
  logical	
  opera�on	
  

§  Used	
  for	
  condi�onal	
  branching	
  

PC	
  
Registers	
  

Memory	
  

Code	
  
Data	
  
Stack	
  

Addresses	
  

Data	
  

Instruc�ons	
  Condi�on	
  
Codes	
  

§ Memory	
  
§  Byte	
  addressable	
  array	
  
§  Code	
  and	
  user	
  data	
  
§  Stack	
  to	
  support	
  procedures	
  

Figure: Assembly language view of CPU and memory. Image credit CS:APP



8/18

Condition codes

Automatically set by most arithmetic instructions.

Applicable types Condition code Name Use

Signed and unsigned ZF Zero flag The most recent operation yielded
zero.

Unsigned types CF Carry flag The most recent operation generated
a carry out of the most significant bit.
Used to detect overflow for unsigned
operations

Signed types SF Sign flag The most recent operation yielded a
negative value.

Signed types OF Overflow flag The most recent operation yielded a
two’s complement positive or nega-
tive overflow.

Table: Condition codes important for control flow



9/18

Comparison instructions

cmpq source1, source2
Performs source2− source1, and sets the condition codes without setting any
destination register.



10/18

Test for equality

1 short equal_sl (
2 long x,
3 long y
4 ) {
5 return x==y;
6 }

C code function above translates to the
assembly on the right.

equal_sl:
xorl %eax, %eax
cmpq %rsi, %rdi
sete %al
ret

Explanation

I xorl %eax, %eax: Zeros the
32-bit register %eax.

I cmpq %rsi, %rdi: Calculates
%rdi−%rsi (x− y), sets condition
codes without updating any
destination register.

I sete %al: Sets the 8-bit %al
subset of %eax if op yielded zero.



11/18

Test if unsigned x is below unsigned y

1 short below_ul (
2 unsigned long x,
3 unsigned long y
4 ) {
5 return x<y;
6 }

1 short nae_ul (
2 unsigned long x,
3 unsigned long y
4 ) {
5 return !(x>=y);
6 }

Both C code functions above translate to
the assembly on the right.

below_ul:
nae_ul:

xorl %eax, %eax
cmpq %rsi, %rdi
setb %al
ret

Explanation

I xorl %eax, %eax: Zeros %eax.
I cmpq %rsi, %rdi: Calculates

%rdi−%rsi (x− y), sets condition
codes without updating any
destination register.

I setb %al: Sets %al if CF flag set
indicating unsigned overflow.

Yipeng Huang
y = 128

Yipeng Huang
x-y = 127-128 = -1 = overflow

Yipeng Huang
returns 1

Yipeng Huang
CF = 1

Yipeng Huang
x = 127



12/18

Side review: De Morgan’s laws

I ¬A ∧ ¬B ⇐⇒ ¬(A ∨ B)
I (∼ A)&(∼ B) ⇐⇒ ∼ (A|B)



13/18

Set instructions
cmp source1, source2 performs source2− source1, sets condition codes.

Applicable types Set instruction Logical condition Intutive condition

Signed and unsigned sete / setz ZF Equal / zero
Signed and unsigned setne / setnz ∼ ZF Not equal / not zero

Unsigned setb / setnae CF Below
Unsigned setbe / setna CF|ZF Below or equal
Unsigned seta / setnbe ∼ CF& ∼ ZF Above
Unsigned setnb / setae ∼ CF Above or equal

Signed sets SF Negative
Signed setns ∼ SF Nonegative

Signed setl / setnge SF ˆ OF Less than
Signed setle / setng (SF ˆ OF)|ZF Less than or equal
Signed setg / setnle ∼ (SF ˆ OF)& ∼ ZF Greater than
Signed setge / setnl ∼ (SF ˆ OF) Greater than or equal

Table: Set instructions



14/18

Table of contents

Announcements

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Conditional move statements



15/18

Jump instructions

11	

Bryant	
  and	
  O’Hallaron,	
  Computer	
  Systems:	
  A	
  Programmer’s	
  Perspec�ve,	
  Third	
  Edi�on	
  

Carnegie Mellon	



Jumping	
  

¢  jX	
  Instruc�ons	
  
§  Jump	
  to	
  different	
  part	
  of	
  code	
  depending	
  on	
  condi�on	
  codes	
  

jX	
   Condi�on	
   Descrip�on	
  
jmp 1 Uncondi�onal	
  
je ZF Equal	
  /	
  Zero	
  
jne ~ZF Not	
  Equal	
  /	
  Not	
  Zero	
  
js SF Nega�ve	
  
jns ~SF Nonnega�ve	
  
jg ~(SF^OF)&~ZF Greater	
  (Signed)	
  
jge ~(SF^OF) Greater	
  or	
  Equal	
  (Signed)	
  
jl (SF^OF) Less	
  (Signed)	
  
jle (SF^OF)|ZF Less	
  or	
  Equal	
  (Signed)	
  
ja ~CF&~ZF Above	
  (unsigned)	
  
jb CF Below	
  (unsigned)	
  

Figure: Jump instructions. Image credit CS:APP



16/18

Branch statements
1 unsigned long absdiff_ternary (
2 unsigned long x, unsigned long y ){
3 return x<y ? y-x : x-y;
4 }

1 unsigned long absdiff_if_else (
2 unsigned long x, unsigned long y ){
3 if (x<y) return y-x;
4 else return x-y;
5 }

1 unsigned long absdiff_goto (
2 unsigned long x, unsigned long y ){
3 if (!(x<y)) goto Else;
4 return y-x;
5 Else:
6 return x-y;
7 }

All C functions above translate
(-fno-if-conversion) to assembly at right.

absdiff_if_else:
absdiff_goto:

cmpq %rsi, %rdi
jnb .ELSE
movq %rsi, %rax
subq %rdi, %rax
ret

.ELSE:
movq %rdi, %rax
subq %rsi, %rax
ret

Explanation
I cmpq %rsi, %rdi: Calculates

%rdi −%rsi (x − y), sets condition codes.
I jnb .ELSE: Sets program counter /

instruction pointer in %rip (.ELSE) if CF flag
not set indicating no unsigned overflow.



17/18

Table of contents

Announcements

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Conditional move statements



18/18

Deep CPU pipelines

Figure: Pipelined CPU stages. Image credit wikimedia


	Announcements
	Comparisons and program control flow
	What is control flow?
	Condition codes
	Comparison and set instructions

	Modifying control flow via conditional branch statements
	Jump instructions
	Conditional branch statements

	Modifying data flow via conditional move statements
	Conditional move statements


