
1/19

Assembly: Bomb Lab, procedures, and function calls.

Yipeng Huang

Rutgers University

March 23, 2021



2/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data



3/19

Looking ahead

Class plan

1. Today, Tuesday, 3/23: Assembly procedures and function calls.
2. Programming Assignment 3 on bits, bytes, integers, floats due tomorrow,

Wednesday 3/24.
3. Thursday, 3/25: Finish assembly with arrays and structs.
4. Programming Assignment 4 on Defusing a Binary Bomb out. Due Tuesday,

4/6.
5. Starting next week: The memory hierarchy. Reading assignment, CS:APP

Chapter 6.



4/19

Midcourse feedback: workload question

Figure: Midcourse survey comparative workload question results



5/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data



6/19

Programming Assignment 4: Defusing a Binary Bomb

Goals
I Learning to learn to use important tools like GDB.
I Understand how high level programming constructs compile down to

assembly instructions.
I Practice reverse engineering and debugging.

Setup

I Programming assignment description PDF on Canvas.
I Web interface for obtaining bomb and seeing progress.
I Unpacking.



7/19

Unpacking and gathering information about your bomb
What comes in the package

I bomb.c: Skeleton source code
I bomb: The executable binary

objdump -t bomb > symbolTable.txt

I 000000000040143a g F .text 0000000000000022 explode_bomb

objdump -d bomb > bomb.s
Different phases correspond to different topics about assembly programming in
the CS211 lecture slides, in the CS:APP slides, and in the CS:APP book.
I phase_1
I phase_2
I explode_bomb

strings -t x bomb > strings.txt



8/19

Example phase_1 in example bomb from CS:APP website

0000000000400ee0 <phase_1>:
400ee0: 48 83 ec 08 sub $0x8,%rsp
400ee4: be 00 24 40 00 mov $0x402400,%esi
400ee9: e8 4a 04 00 00 callq 401338 <strings_not_equal>
400eee: 85 c0 test %eax,%eax
400ef0: 74 05 je 400ef7 <phase_1+0x17>
400ef2: e8 43 05 00 00 callq 40143a <explode_bomb>
400ef7: 48 83 c4 08 add $0x8,%rsp
400efb: c3 retq

Understanding what we’re seeing here

I Don’t let callq to explode_bomb at instruction address 400ef2 happen...
I so, must ensure je instruction does jump, so we want test instruction to set

ZF condition code to 0.
I so, must ensure callq to strings_not_equal() function returns 0.



9/19

Using GDB to carefully step through execution of the bomb program

gdb bomb

Finding help in GDB

I help: Menu of documentation.
I help layout: Useful tip to use either layout asm or layout regs for

this assignment.
I help aliases

I help running

I help data

I help stack



10/19

Using GDB to carefully step through execution of the bomb program

gdb bomb

Setting breakpoints and running / stepping through code

I break explode_bomb or b explode_bomb: Pause execution upon
entering explode_bomb function.

I break phase_1 or b phase_1: Pause execution upon entering phase_1
function.

I run mysolution.txt or r mysolution.txt: Run the code passing the
solution file.

I continue or c: Continue until the next breakpoint.
I nexti or ni: Step one instruction, but proceed through subroutine calls.
I stepi or si: Step one instruction exactly. Steps into functions / subroutine

calls.



11/19

Using GDB to carefully step through execution of the bomb program

gdb bomb

Printing and examining registers and memory addresses

I print /x $eax or p /x $eax: Print value of %eax register as hex.
I print /d $eax or p /d $eax: Print value of %eax register as decimal.
I x /s 0x402400: Examine memory address 0x402400 as a string.



12/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data



13/19

Procedures and function calls

To create the abstraction of functions, need to:
I Transfer control to function and back
I Transfer data to function (parameters)
I transfer data from function (return type)



14/19

CPU and memory state in support of procedures and functions

Carnegie Mellon 

12 Bryant	
  and	
  O’Hallaron,	
  Computer	
  Systems:	
  A	
  Programmer’s	
  Perspec�ve,	
  Third	
  Edi�on	
  

CPU	
  

Assembly/Machine	
  Code	
  View	
  

Programmer-­‐Visible	
  State	
  
§  PC:	
  Program	
  counter	
  

§  Address	
  of	
  next	
  instruc�on	
  
§  Called	
  “RIP”	
  (x86-­‐64)	
  

§  Register	
  file	
  
§  Heavily	
  used	
  program	
  data	
  

§  Condi�on	
  codes	
  
§  Store	
  status	
  informa�on	
  about	
  most	
  
recent	
  arithme�c	
  or	
  logical	
  opera�on	
  

§  Used	
  for	
  condi�onal	
  branching	
  

PC	
  
Registers	
  

Memory	
  

Code	
  
Data	
  
Stack	
  

Addresses	
  

Data	
  

Instruc�ons	
  Condi�on	
  
Codes	
  

§ Memory	
  
§  Byte	
  addressable	
  array	
  
§  Code	
  and	
  user	
  data	
  
§  Stack	
  to	
  support	
  procedures	
  

Figure: View of computer from assembly. Image credit CS:APP

Relevant state in CPU:
I %rip register /

instruction pointer
/ program counter

I %rsp register /
stack pointer

Relevant state in
Memory:

I Stack



15/19

Stack instructions: push and pop

Increasing
address

 

Stack “top” 

Stack “bottom” 

0x108 

 

Stack “top” 

Stack “bottom” 

0x100 

 

Stack “top” 

Stack “bottom” 

0x108 
0x123 

0x123 

0 

0x108 

%rax 

%rdx 

%rsp 

Initially

0x123 

0 

0x100 

%rax 

%rdx 

%rsp 

pushq %rax 

0x123 

0x123 

0x108 

%rax 

%rdx 

%rsp 

popq %rdx 

0x123 
0x108 

Figure: x86-64 offers dedicated instructions to work with stack in memory. In addition to
moving data, the updating of %rsp is implied. Image credit: CS:APP.



16/19

Procedure call and return: call and ret

 

 

 

0x400563     
0x7fffffffe840 

%rip 
%rsp 

( a ) E x e c u t i n g c a l l 

 

 

 

    

 

 

0x400568 

( b ) A f t e r c a l l ( c ) A f t e r r e t 

0x400540    
0x7fffffffe838 

%rip 
%rsp 

0x400568     
0x7fffffffe840 

%rip 
%rsp 

Figure: Effect of call 0x400540 instruction and subsequent return. call and ret
instructions update the instruction pointer, the stack pointer, and the stack to create the
procedure / function call abstraction. Image credit: CS:APP.



17/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data



18/19

Procedures and function calls: Transferring data
For purposes of this class, the Bomb Lab, and the CS:APP textbook, we study the
x86-64 Linux Application Binary Interface (ABI). Would be different on ARM or in
Windows. So, don’t memorize this, but it is helpful for PA4 Bomb Lab.

Passing parameters

Parameter Register / stack Subset registers Mnemonic1

1st %rdi %edi, %di Diane’s
2nd %rsi %esi, %si silk
3rd %rdx %edx, %dx, %dl dress
4th %rcx %ecx, %cx, %cl cost
5th %r8 %r8d $8
6th %r9 %r9d 9

7th and beyond Stack

1http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html


19/19

Procedures and function calls: Transferring data

Passing function return data
Function return data is passed via:
I the 64-bit %raX register
I the 32-bit subset %eax register
I the 16-bit subset %ax register
I the 8-bit subset %al register


	Announcements
	Programming Assignment 4: Defusing a Binary Bomb
	Unpacking your bomb
	Using GDB

	Procedures and function calls: Transferring control
	Special state
	Stack instructions: push and pop
	Procedure call and return: call and ret

	Procedures and function calls: Transferring data

