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Looking ahead

Class plan

1. Today, Tuesday, 3/23: Assembly procedures and function calls.
2. Programming Assignment 3 on bits, bytes, integers, floats due tomorrow,

Wednesday 3/24.
3. Thursday, 3/25: Finish assembly with arrays and structs.
4. Programming Assignment 4 on Defusing a Binary Bomb out. Due Tuesday,

4/6.
5. Starting next week: The memory hierarchy. Reading assignment, CS:APP

Chapter 6.
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Midcourse feedback: workload question

Figure: Midcourse survey comparative workload question results
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Programming Assignment 4: Defusing a Binary Bomb

Goals
I Learning to learn to use important tools like GDB.
I Understand how high level programming constructs compile down to

assembly instructions.
I Practice reverse engineering and debugging.

Setup

I Programming assignment description PDF on Canvas.
I Web interface for obtaining bomb and seeing progress.
I Unpacking.
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Unpacking and gathering information about your bomb
What comes in the package

I bomb.c: Skeleton source code
I bomb: The executable binary

objdump -t bomb > symbolTable.txt

I 000000000040143a g F .text 0000000000000022 explode_bomb

objdump -d bomb > bomb.s
Different phases correspond to different topics about assembly programming in
the CS211 lecture slides, in the CS:APP slides, and in the CS:APP book.
I phase_1
I phase_2
I explode_bomb

strings -t x bomb > strings.txt
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Example phase_1 in example bomb from CS:APP website

0000000000400ee0 <phase_1>:
400ee0: 48 83 ec 08 sub $0x8,%rsp
400ee4: be 00 24 40 00 mov $0x402400,%esi
400ee9: e8 4a 04 00 00 callq 401338 <strings_not_equal>
400eee: 85 c0 test %eax,%eax
400ef0: 74 05 je 400ef7 <phase_1+0x17>
400ef2: e8 43 05 00 00 callq 40143a <explode_bomb>
400ef7: 48 83 c4 08 add $0x8,%rsp
400efb: c3 retq

Understanding what we’re seeing here

I Don’t let callq to explode_bomb at instruction address 400ef2 happen...
I so, must ensure je instruction does jump, so we want test instruction to set

ZF condition code to 0.
I so, must ensure callq to strings_not_equal() function returns 0.
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Using GDB to carefully step through execution of the bomb program

gdb bomb

Finding help in GDB

I help: Menu of documentation.
I help layout: Useful tip to use either layout asm or layout regs for

this assignment.
I help aliases

I help running

I help data

I help stack
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Using GDB to carefully step through execution of the bomb program

gdb bomb

Setting breakpoints and running / stepping through code

I break explode_bomb or b explode_bomb: Pause execution upon
entering explode_bomb function.

I break phase_1 or b phase_1: Pause execution upon entering phase_1
function.

I run mysolution.txt or r mysolution.txt: Run the code passing the
solution file.

I continue or c: Continue until the next breakpoint.
I nexti or ni: Step one instruction, but proceed through subroutine calls.
I stepi or si: Step one instruction exactly. Steps into functions / subroutine

calls.
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Using GDB to carefully step through execution of the bomb program

gdb bomb

Printing and examining registers and memory addresses

I print /x $eax or p /x $eax: Print value of %eax register as hex.
I print /d $eax or p /d $eax: Print value of %eax register as decimal.
I x /s 0x402400: Examine memory address 0x402400 as a string.
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Procedures and function calls

To create the abstraction of functions, need to:
I Transfer control to function and back
I Transfer data to function (parameters)
I transfer data from function (return type)
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CPU and memory state in support of procedures and functions
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Figure: View of computer from assembly. Image credit CS:APP

Relevant state in CPU:
I %rip register /

instruction pointer
/ program counter

I %rsp register /
stack pointer

Relevant state in
Memory:

I Stack
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Stack instructions: push and pop

Increasing
address

 

Stack “top” 

Stack “bottom” 

0x108 
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Stack “bottom” 
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Stack “top” 

Stack “bottom” 

0x108 
0x123 

0x123 

0 

0x108 

%rax 

%rdx 

%rsp 

Initially

0x123 
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0x100 

%rax 

%rdx 

%rsp 

pushq %rax 

0x123 

0x123 
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%rax 

%rdx 

%rsp 

popq %rdx 

0x123 
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Figure: x86-64 offers dedicated instructions to work with stack in memory. In addition to
moving data, the updating of %rsp is implied. Image credit: CS:APP.
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Procedure call and return: call and ret

 

 

 

0x400563     
0x7fffffffe840 

%rip 
%rsp 

( a ) E x e c u t i n g c a l l 

 

 

 

    

 

 

0x400568 

( b ) A f t e r c a l l ( c ) A f t e r r e t 

0x400540    
0x7fffffffe838 

%rip 
%rsp 

0x400568     
0x7fffffffe840 

%rip 
%rsp 

Figure: Effect of call 0x400540 instruction and subsequent return. call and ret
instructions update the instruction pointer, the stack pointer, and the stack to create the
procedure / function call abstraction. Image credit: CS:APP.
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Procedures and function calls: Transferring data
For purposes of this class, the Bomb Lab, and the CS:APP textbook, we study the
x86-64 Linux Application Binary Interface (ABI). Would be different on ARM or in
Windows. So, don’t memorize this, but it is helpful for PA4 Bomb Lab.

Passing parameters

Parameter Register / stack Subset registers Mnemonic1

1st %rdi %edi, %di Diane’s
2nd %rsi %esi, %si silk
3rd %rdx %edx, %dx, %dl dress
4th %rcx %ecx, %cx, %cl cost
5th %r8 %r8d $8
6th %r9 %r9d 9

7th and beyond Stack

1http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html
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Procedures and function calls: Transferring data

Passing function return data
Function return data is passed via:
I the 64-bit %raX register
I the 32-bit subset %eax register
I the 16-bit subset %ax register
I the 8-bit subset %al register
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