Assembly: Bomb Lab, procedures, and function calls.

Yipeng Huang
Rutgers University

March 23, 2021

119

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data

2/19

Looking ahead

Class plan

1.
2.

Today, Tuesday, 3/23: Assembly procedures and function calls.

Programming Assignment 3 on bits, bytes, integers, floats due tomorrow,
Wednesday 3/24.

Thursday, 3/25: Finish assembly with arrays and structs.

Programming Assignment 4 on Defusing a Binary Bomb out. Due Tuesday,
4/6.

. Starting next week: The memory hierarchy. Reading assignment, CS:APP

Chapter 6.

3/19

Midcourse feedback: workload question

Compared to other classes in the computer science department, the workload of this class is: 1: much
lighter, 2: lighter, 3: the same, 4: heavier, 5: much heavier.

1(1) | 0.75%

2 (8) [6.02%

3 (64) | 48.12%

4(41) I 30.83%

5(19) N 14.29%

[Total (133)]
0 50% 100%

Statistics Value
Response Count 133
Mean 3.52
Median 3.00

Figure: Midcourse survey comparative workload question results

4/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data

5/19

Programming Assignment 4: Defusing a Binary Bomb

Goals
» Learning to learn to use important tools like GDB.

» Understand how high level programming constructs compile down to
assembly instructions.

» Practice reverse engineering and debugging.

Setup

» Programming assignment description PDF on Canvas.
» Web interface for obtaining bomb and seeing progress.
» Unpacking.

6/19

Unpacking and gathering information about your bomb
What comes in the package

» bomb. c: Skeleton source code
» bomb: The executable binary

objdump -t bomb > symbolTable.txt
» (000000000040143a g F .text 0000000000000022 explode_bomb

objdump -d bomb > bomb.s
Different phases correspond to different topics about assembly programming in
the CS211 lecture slides, in the CS:APP slides, and in the CS:APP book.

» phase_1
» phase_2
» explode_bomb

strings -t x bomb > strings.txt

7/19

Example phase_1 in example bomb from CS:APP website

0000000000400ee0 <phase_1>:
400ee0:
400eeid:
400ee9:
400eee:
400ef0:
400ef2:
400ef7:
400efb:

Understanding what we’re seeing here

48
be
el
85
74
e8
48
c3

83
00
4a
cO
05
43
83

ec 08
24 40 00
04 00 00

05 00 00
c4 08

sub
mov
callg
test
je
callg
add
retqg

$0x8, $rsp

$0x402400, %$esi

401338 <strings_not_equal>
%$eax, $eax

400ef7 <phase_1+0x17>
40143a <explode_bomb>
$0x8, $rsp

» Don'tlet callqgto explode_bomb at instruction address 400ef2 happen...

» so, must ensure Jje instruction does jump, so we want test instruction to set
ZF condition code to 0.

» so, must ensure callqgto strings_not_equal () function returns 0.

8/19

Using GDB to carefully step through execution of the bomb program

gdb bomb
Finding help in GDB
» help: Menu of documentation.

» help layout: Useful tip to use either layout asmor layout regs for
this assignment.

help aliases
help running

help data

vvyyypy

help stack

9/19

Using GDB to carefully step through execution of the bomb program

gdb bomb
Setting breakpoints and running / stepping through code

» break explode_bomborb explode_bomb: Pause execution upon
entering explode_bomb function.

» break phase_1lorb phase_1: Pause execution upon entering phase_1
function.

» run mysolution.txtorr mysolution.txt: Run the code passing the
solution file.

» continue or c: Continue until the next breakpoint.

v

nexti or ni: Step one instruction, but proceed through subroutine calls.

> stepi or si: Step one instruction exactly. Steps into functions / subroutine
calls.

10/19

Using GDB to carefully step through execution of the bomb program

gdb bomb
Printing and examining registers and memory addresses

» print /x S$eaxorp /x Seax: Print value of %eax register as hex.
» print /d S$eaxorp /d S$Seax: Print value of %eax register as decimal.

> x /s 0x402400: Examine memory address 0x402400 as a string.

11/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data

12/19

Procedures and function calls

To create the abstraction of functions, need to:

» Transfer control to function and back
» Transfer data to function (parameters)

» transfer data from function (return type)

13/19

CPU and memory state in support of procedures and functions

Carnegie Mellon

Assembly/Machine Code View

CPU Memory .
. Addresses Relevant state in CPU:
Registers
Data Code 0/ ot .

« » Data » Yrip register /

Conditi
Codes Instructions stack instruction pointer
/ program counter

Programmer-Visible State > %rsp register /

= PC: Program counter " Memory >
= Address of next instruction * Byte addressable array stack pOlnter
= Called “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data

Relevant state in

= Condition codes Memory:
= Store status information about most
recent arithmetic or logical operation > Stack
anant and ovataron, EoriSS SO SO0t IONAl branching. . 12

14/19

Stack instructions: push and pop

Incre
add

asing
ress

0x108

Initially pushqg $rax popq %$rdx
srax | 0x123 Srax | 0x123 Srax | 0x123
Srdx 0 Srdx 0 Srdx | 0x123
srsp | 0x108 srsp | 0x100 $rsp | 0x108

Stack “bottom”

Stack “bottom”

Stack “bottom”

0x108

0x108

Stack “top”

0x100

0x123

0x123

Stack “top”

Stack “top”

—)

Figure: x86-64 offers dedicated instructions to work with stack in memory. In addition to
moving data, the updating of %rsp is implied. Image credit: CS:APP.

15/19

Procedure call and return: call and ret

0x400563 srip 0x400540 3rip 0x400568

— $rsp|Ox7fffffffe840

srip

] $rsp|Ox7fffffffe840| [%rsp|Ox7fffffffe838

) ° PP [)
]] o
° L] L]
—> >
—> 0x400568
(a) Executing ca11 (b) After ca11 (c) After ret

Figure: Effect of call 0x400540 instruction and subsequent return. call and ret
instructions update the instruction pointer, the stack pointer, and the stack to create the
procedure / function call abstraction. Image credit: CS:APP.

16/19

Table of contents

Announcements

Programming Assignment 4: Defusing a Binary Bomb
Unpacking your bomb
Using GDB

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret

Procedures and function calls: Transferring data

17/19

Procedures and function calls: Transferring data

For purposes of this class, the Bomb Lab, and the CS:APP textbook, we study the
x86-64 Linux Application Binary Interface (ABI). Would be different on ARM or in
Windows. So, don’t memorize this, but it is helpful for PA4 Bomb Lab.

Passing parameters

Parameter ‘ Register / stack Subset registers ‘ Mnemonic

1

1st

2nd

3rd

4th

5th

6th

7th and beyond

O/OI'di
Yorsi
0/OI'dX
Yorex
%r8
%719
Stack

%edi, %di
%esi, Yosi
%edx, O/OdX, %d1
%ecx, Yocx, Yocl
%r8d
%r9d

Diane’s
silk
dress
cost

$8

9

1http: //csappbook.blogspot.com/2015/08/dianes-silk-dress~costs=89.html

18/19

http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

Procedures and function calls: Transferring data

Passing function return data
Function return data is passed via:
» the 64-bit %raX register
> the 32-bit subset %eax register
» the 16-bit subset %ax register
» the 8-bit subset %al register

19/19

	Announcements
	Programming Assignment 4: Defusing a Binary Bomb
	Unpacking your bomb
	Using GDB

	Procedures and function calls: Transferring control
	Special state
	Stack instructions: push and pop
	Procedure call and return: call and ret

	Procedures and function calls: Transferring data

