Assembly: Procedures, function calls, stack discipline,
recursion.

Yipeng Huang
Rutgers University

March 25, 2021

1/12

Table of contents

Announcements

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data

2/12

Looking ahead

Class plan
1. Today, Thursday, 3/25: Assembly procedures, function calls, stack discipline,
recursion.

2. Starting next week: Recitations will have specialized topics for remainder of
semester. https://rutgers.instructure.com/courses/104725/
pages/recitation-and-office-hour-information

3. Starting next week: The memory hierarchy. Reading assignment, CS:APP
Chapter 6.

3/12

https://rutgers.instructure.com/courses/104725/pages/recitation-and-office-hour-information
https://rutgers.instructure.com/courses/104725/pages/recitation-and-office-hour-information

Table of contents

Announcements

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data

4/12

Procedures and function calls

N return v[t];

}

Figure: Steps of a C function
call. Image credit CS:APP

To create the abstraction of functions, need to:

» Transfer control to function and back
» Transfer data to function (parameters)
> transfer data from function (return type)

5/12

CPU and memory state in support of procedures and functions

Carnegie Mellon

Assembly/Machine Code View

CPU Memor
Addresses y

Registers Code

Data
Condition Instructions Stack

Codes
Programmer-Visible State
= Memory

= PC: Program counter
= Address of next instruction
= Called “RIP” (x86-64)
= Register file
= Heavily used program data
= Condition codes
= Store status information about most
recent arithmetic or logical operation

srantond ovitiron, S P39 £QL SONIIONAI Lranching...

= Byte addressable array
= Code and user data

= Stack to support procedures

Relevant state in CPU:

> %rip register /
instruction pointer
/ program counter

> Y%rsp register /
stack pointer

Relevant state in
Memory:

» Stack

6/12

Stack instructions: push and pop

OP SRC DEST
PUSHQ SRC
POPQ DEST

Incre
add

asing
ress

0x108

Initially pushqg $rax popq %$rdx
srax | 0x123 Srax | 0x123 Srax | 0x123
Srdx 0 Srdx 0 Srdx | 0x123
srsp | 0x108 srsp | 0x100 $rsp | 0x108

Stack “bottom”

Stack “bottom”

Stack “bottom”

0x108

0x108

Stack “top”

0x100

0x123

0x123

Stack “top”

Stack “top”

—)

Figure: x86-64 offers dedicated instructions to work with stack in memory. In addition to
moving data, the updating of %rsp is implied. Image credit: CS:APP.

7/12

Yipeng Huang
PUSHQ SRC

Yipeng Huang
OP SRC DEST

Yipeng Huang
POPQ DEST

Procedure call and return: call and ret

0x400563 srip 0x400540 3rip 0x400568

— $rsp|Ox7fffffffe840

srip

] $rsp|Ox7fffffffe840| [%rsp|Ox7fffffffe838

) ° PP [)
]] o
° L] L]
—> >
—> 0x400568
(a) Executing ca11 (b) After ca11 (c) After ret

. explode_bomb() .
Figure: Effect of call 0x400540 instruction and subsequent return. call and ret

instructions update the instruction pointer, the stack pointer, and the stack to create the
procedure / function call abstraction. Image credit: CS:APP.

8/12

Yipeng Huang
explode_bomb()

Example

in GDB

int main ()

1

2

3

4

5 }
6

7

8 int num
9

#include <stdio.h>

int return_neg_one () {
return -1;

{

= return_neg_one () ;

printf ("%d", num);

10 return 0;

1 }

return_neg_one:

movl
ret
main:
subg
movl
call
movl

$-1, %eax

$8, %rsp

50, %eax
return_neg_one
%eax, %edx

Compile, and then run it in GDB:
gdb return

In GDB, see evolution of %rip, %rsp,
and stack:

» (gdb) layout split

» (gdb) break return_neg_one
» (gdb) print /a S$Srip

» (gdb) print /a Srsp

» (gdb) x /a S$rsp

Step past return instruction, and
inspect again:

» (gdb) stepi

9/12

Table of contents

Announcements

Procedures and function calls: Transferring control
Special state
Stack instructions: push and pop
Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data

10/12

Procedures and function calls: Transferring data

For purposes of this class, the Bomb Lab, and the CS:APP textbook, we study the
x86-64 Linux Application Binary Interface (ABI). Would be different on ARM or in
Windows. So, don’t memorize this, but it is helpful for PA4 Bomb Lab.

Passing parameters

Parameter ‘ Register / stack Subset registers ‘ Mnemonic

1

1st

2nd

3rd

4th

5th

6th

7th and beyond

O/OI'di
Yorsi
0/OI'dX
Yorex
%r8
%719
Stack

%edi, %di
%esi, Yosi
%edx, O/OdX, %d1
%ecx, Yocx, Yocl
%r8d
%r9d

Diane’s
silk
dress
cost

$8

9

1http: //csappbook.blogspot.com/2015/08/dianes-silk-dress~costs=89.html

11/12

http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

Procedures and function calls

Passing function return data
Function return data is passed via:
» the 64-bit %rax register
> the 32-bit subset %eax register

: Transferring data

12/12

	Announcements
	Procedures and function calls: Transferring control
	Special state
	Stack instructions: push and pop
	Procedure call and return: call and ret
	Example in GDB

	Procedures and function calls: Transferring data

