
1/26

Caches: placement policy, replacement policy, and cache
hierarchies

Yipeng Huang

Rutgers University

April 6, 2021

2/26

Table of contents

Announcements

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache

3/26

Looking ahead

Class plan

1. Today, Tuesday, 4/6: Caches: design parameters, direct mapped, fully
associative, set associative.

2. Wednesday, 4/7: PA5 cache simulator and performance released
3. Thursday, 4/8: PA4 binary bomb lab due.
4. Monday, 4/12: Quiz due.

4/26

Table of contents

Announcements

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache

5/26

Cache, memory, storage, and network hierarchy trends

I Assembly
programming view
of computer: CPU
and memory.

I Full view of
computer
architecture and
systems: +caches,
+storage, +network

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Figure: Memory hierarchy. Image credit CS:APP

6/26

Cache, memory, storage, and network hierarchy trends

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Figure: Widening gap: CPU processing time vs. memory
access time. Image credit CS:APP

Topic of this chapter:

I Technology trends
that drive
CPU-memory gap.

I How to create
illusion of fast
access to capacious
data.

7/26

Dynamic random-access memory (main memory)

I Needs refreshing
every 10s of
milliseconds

I 8GB typical in
laptop; 1TB on each
ilab machine

I Access time: 100
CPU clock cycles

I Memory gap:
DRAM
technological
improvement
slower relative to
CPU/SRAM.

Figure: DRAM operating principle. Image credit ocw.mit.edu

8/26

Static random-access memory (caches)

I SRAM is bistable logic
I Access time: 1 to 10 CPU clock

cycles
I Implemented in the same transistor

technology as CPUs, so
improvement has matched pace.

Figure: SRAM operating principle. Image
credit Wikimedia

9/26

CPU / cache / DRAM main memory interface

Main!
memory!

I/O!
bridge!Bus interface!

ALU!

Register file!
CPU chip!

System bus! Memory bus!

Cache !
memories!

Figure: Cache resides on CPU chip close to
register file. Image credit CS:APP

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

10/26

Locality: How to create illusion of fast access to capacious data

From the perspective of memory hierarchy, locality is using the data in at any
particular level more frequently than accessing storage at next slower level.

Well-written programs maximize locality

I Spatial locality
I Temporal locality

11/26

CPU / cache / DRAM main memory interactions

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

When CPU loads (LD) from memory

I Cache read hit
I Cache read miss

When CPU stores (ST) to memory

I Cache write hit
I Cache write miss

12/26

Table of contents

Announcements

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache

13/26

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

I Fully associative cache
I Direct-mapped cache
I N-way set-associative cache

Cache design options use m-bit
memory addresses differently

I t-bit tag
I s-bit set index
I b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP

Yipeng Huang
m = t+s+b

14/26

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

m-bit memory address
split into:

I t-bit tag
I b-bit block offset

Yipeng Huang
(s=0)

15/26

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

b-bit block offset
I here, b = 3
I The number of bytes

in a block is
B = 2b = 23 = 8

I A block is the
minimum number of
bytes that can be
cached

I Good for capturing
spatial locality, short
strides

Yipeng Huang
4-byte integer at address 0b00001100 (m=8)
always store 8 bytes in a row
4-byte integer at address 0b00001100+4

16/26

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

t-bit tag

I here,
t = m − b = m − 3

I When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

Yipeng Huang
READ 4-byte integer at address 0b00001100 (m=8)
tag = 0b00001 (t=5)
For fully associative cache design, the tag is a ID for blocks

17/26

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Full associativity

I Blocks can go into any
of E ways

I Here, E = 3
I Good for capturing

temporal locality:
cache hits can happen
even with intervening
reads and writes to
other tags.

Yipeng Huang
tag = 0b00001 (t=5)
0b00001000
0b00001001
0b00001010
…
0b00001111

18/26

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Capacity of cache

I Total capacity of fully
associative cache in
bytes: C = EB = E ∗ 2b

I Here,
C = E∗2b = 3∗23 = 24
bytes

Yipeng Huang
(addresses)

Yipeng Huang
(addresses)

19/26

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Strengths

I Blocks can go into any
of E-ways.

I Hit rate is only limited
by total capacity.

Weaknesses
I Searching across all

valid tags is
expensive.

I Figuring out which
block to evict on
read/write miss is
also expensive.

I Requires a lot of
combinational logic.

20/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

m-bit memory address
split into:

I t-bit tag
I s-bit set index
I b-bit block offset

21/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

b-bit block offset
I here, b = 3
I The number of bytes

in a block is
B = 2b = 23 = 8

I A block is the
minimum number of
bytes that can be
cached

I Good for capturing
spatial locality, short
strides

22/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

s-bit set index
I here, s = 2
I The number of sets in

cache is
S = 2s = 22 = 4

I A hash function that
limits exactly where a
block can go

I Good for further
increasing ability to
exploit spatial locality,
short strides

Yipeng Huang
Suppose load from memory address 0b000_01_100 (m=8 bit memory address)

Yipeng Huang
set_index = 01

Yipeng Huang
set_index = 10

Yipeng Huang
set_index = 00

Yipeng Huang
set index

Yipeng Huang
set_index = 11

23/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

t-bit tag

I here,
t = m−s−b = m−2−3

I When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

Yipeng Huang
Suppose load from memory address 0b000_01_100 (m=8 bit memory address)
tag = 0b000

Yipeng Huang
tag = 0b000

Yipeng Huang
tag = 0b000

24/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Full associativity

I In direct-mapped
cache, blocks can go
into only one of E = 1
way

25/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Capacity of cache

I Total capacity of fully
associative cache in
bytes:
C = SEB = 2s ∗ E ∗ 2b

I Here, C = 2s ∗ E ∗ 2b =
22 ∗ 1 ∗ 23 = 32 bytes

26/26

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

I Simple to implement.
I No need to search

across tags.

Weaknesses
I Can lead to surprising

thrashing of cache
with unfortunate
access patterns.

I Unexpected conflict
misses independent of
cache capacity.

Yipeng Huang
Suppose the following sequence of operations:
1. load from memory address 0b000_01_100
2. load from memory address 0b001_01_100
3. load from memory address 0b000_01_100
4. load from memory address 0b001_01_100
… leads to cache being ineffective

	Announcements
	Caches: motivation
	Hardware caches supports software locality
	Software locality exploits hardware caches

	Cache placement policy (how to find data at address for read and write hit)
	Fully associative cache
	Direct-mapped cache

