
1/19

Caches: replacement policy, memory policy, and cache
hierarchies

Yipeng Huang

Rutgers University

April 8, 2021

2/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

3/19

Looking ahead

Class plan

1. Thursday, 4/8: PA5 cache simulator and performance released.
2. Thursday, 4/8: PA4 binary bomb lab due.
3. Monday, 4/12: Quiz due.

4/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

5/19

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

I Fully associative cache
I Direct-mapped cache
I E-way set-associative cache

Cache design options use m-bit
memory addresses differently

I t-bit tag
I s-bit set index
I b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP

Yipeng Huang
m = 48bits, or 64bits, or 32bits

6/19

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Strengths

I Blocks can go into any
of E-ways.

I Hit rate is only limited
by total capacity.

Weaknesses
I Searching across all

valid tags is
expensive.

I Figuring out which
block to evict on
read/write miss is
also expensive.

Yipeng Huang
s=0; S=2^s=1 sets, therefore, no hash function involved

7/19

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

I Simple to implement.
I No need to search

across tags.

Weaknesses
I Can lead to surprising

thrashing of cache
with unfortunate
access patterns.

I Unexpected conflict
misses independent of
cache capacity.

Yipeng Huang
E=1

8/19

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

9/19

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

I Blocks can go into any
of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

I Only need to search
across E tags. Avoids
costly searching
across all valid tags.

I Avoids conflict misses
due to unfortunate
access patterns.

10/19

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:
I C = 32KB L1 data cache

per core

I S = 64 = 26 sets/cache
(s = 6 bits)

I E = 8 = 23 ways/set

I B = 64 = 26 bytes/block
(b = 6 bits)

I C = S ∗ E ∗ B

I Assuming memory
addresses are m = 48,
then tag size
t = m − s − b =
48 − 6 − 6 = 36 bits.

11/19

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

12/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

13/19

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

I The number of sets in
cache is
S = 2s = 22 = 4.

I A hash function that
limits exactly where a
block can go.

I In direct-mapped
cache, blocks can go
into only one of E = 1
way.

I No cache replacement
policy is needed.

14/19

Associative caches

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

I Blocks can go into any
of E ways

I Here, E = 3
I Good for capturing

temporal locality.
I If all

ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for
replacement?

15/19

Cache replacement policies for associative caches

FIFO: First-in, first-out
I Evict the cache line that was placed the longest ago.
I Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

I Evict the cache line that was last accessed longest ago.
I Needs a counter on each cache line, and/or a global counter (e.g., program

counter).

16/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

17/19

Policies for writes from CPU to memory
How to deal with write-hit? How to deal with write-miss?

I Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

I No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

I Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

I Write-allocate. Complex. Write-misses will
not load block into cache.

Typical designs:
I Simple: write-through + no-write-allocate.
I Complex: write-back + write-allocate.

Yipeng Huang
READ / LOAD from memory: movq (0x00) %eax
WRITE / STORE to memory: movq %eax (0x00)

18/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

19/19

Multilevel cache hierarchies

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 0!

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 3!

…!

L3 unified cache!
(shared by all cores)!

Main memory!

Processor package!

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

I L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

I L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

I L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

	Announcements
	Cache placement policy (how to find data at address for read and write hit)
	Fully associative cache
	Direct-mapped cache
	Set-associative cache

	Cache replacement policy (how to find space for read and write miss)
	Direct-mapped cache need no cache replacement policy
	Associative caches need a cache replacement policy (e.g., FIFO, LRU)

	Policies for writes from CPU to memory
	Multilevel cache hierarchies

