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Looking ahead

Class plan

1. Thursday, 4/8: PA5 cache simulator and performance released.
2. Thursday, 4/8: PA4 binary bomb lab due.
3. Monday, 4/12: Quiz due.
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Cache placement policy (how to find data at address for read and
write hit)

tbits s bits bbits
Address: | [ [ ]
i

Several designs for caches Ao o

Tag Setindex Block offset

» Fully associative cache
» Direct-mapped cache

L m = 48bits, or 64bits, or 32bits
» E-way set-associative cache

Cache design options use m-bit
memory addresses differently
> t-bit tag
» s-bit set index

» b-bit block offset Figure: Memory addresses. Image credit
CS:APP
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m = 48bits, or 64bits, or 32bits


Fully associative cache

s=0; S=2/s=1 sets, therefore, no hash
function involved

valid? + match: assume yes = hit

Address of int:

r t bits 100
1
Cees ] LRG|
|
block offset
eways § [ Cee] 1|
[ee ] CLREGLEG 0|
\

Figure: Fully associative cache. Image credit CS:APP

Strengths

» Blocks can go into any
of E-ways.

» Hit rate is only limited
by total capacity.

Weaknesses

» Searching across all
valid tags is
expensive.

» Figuring out which
block to evict on
read /write miss is
also expensive.
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s=0; S=2^s=1 sets, therefore, no hash function involved


Direct-mapped cache

E=1
, Add
I tag ||0|1|2|3|4|5|6|7|| t bits E)esgl 100
] [ ||o|1]z|s|4|slel7ll—ﬁ‘ndset
S=25sets

[ Coe ] CLEEELEE|
[ Cee ] CEERLEE|

\

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

» Simple to implement.

» No need to search
across tags.

Weaknesses

» Can lead to surprising
thrashing of cache
with unfortunate
access patterns.

» Unexpected conflict
misses independent of
cache capacity.
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Direct-mapped cache

( Address
[ Coe ] LLEL )
[ e ||o|1|z|s|4|s|e|v||—ﬁ‘ndset , .
§= 25 sets < Let’s see textbook slides
[ [ ||°|1|2|3|4|5|6|7|l for a simulation
oo | CLEEGL 0|

\

Figure: Direct-mapped cache. Image credit CS:APP
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E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

Figure: Direct-mapped cache. Image credit CS:APP

1 valid bit  ttag bits
per line per line

B =2bbytes
per cache block

[Vaiia] [ Tag J[o[1 ] -~ [B1]
Vaiia] [ Tag J[o[1 ] - [51]

[vaia] [ 7eg J[o 1] — [51]
[vaia] [ Tag ][0 [ 1] — [81]

[vaiia] [ Tag J[o 1] - [B4]
Vaiia] [ Tag J[ 0[] -~ [B]

Cache size: C =B x E x S data bytes

} E lines per set

Strengths

» Blocks can go into any

of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

Only need to search
across E tags. Avoids
costly searching
across all valid tags.

Avoids conflict misses
due to unfortunate
access patterns.
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E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

1 valid bit  ttag bits
per line per line

B =2bbytes

per cache block

] [ g (o [ ] (o
ere]) [ 7 ] (o [ 11~ [o1]
] [ JLo [ o
vere] [T ][0 [+ ]~ [o1]
e [ 7os Lo [T o]
ere] [ 7 ) [0 [ 1] [51]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:

>

>

C = 32KB L1 data cache
per core

S = 64 = 2° sets/cache
(s = 6 bits)

> E=8=2%ways/set
> B = 64 = 2% bytes/block

(b = 6 bits)

> Assuming memory

addresses are m = 48,
then tag size
t=m-s—b=
48 — 6 — 6 =36 bits.
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E-way set-associative cache

porine perine. Doliones
fie] [ 7o J[o [ ] - 1]
% | eta) [ g J Lo [+ 1~ [o1]
o] [ g Lo 11 o]
sezmst " | ] [ )0 [T ool
] [ Jo [ 1= o
% ane] [ 1[0 (1] Jo1]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation
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Direct-mapped cache

-

Address
[ Coe ] CLEERLEEL|

0] [ ||o|1|z|a|4|s|e|v||—ﬁ‘ndset

[ Cee ] CEEELEE|
B G | CLLEGLGLE|

S=2s sets<

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

» The number of sets in

cache is
S=25=22—-4
A hash function that

limits exactly where a
block can go.

In direct-mapped
cache, blocks can go
into only one of E =1
way.

No cache replacement
policy is needed.
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Associative caches

E ways <

valid? + match: assume yes = hit

Address of int:

-

1
[ee ] GLEGLEG0|
|

t bits 100

[ee ] GLREGLEG 0|

Cee ] LLEEGLL ]|

\

block offset

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

>

>
>

>

Blocks can go into any
of E ways

Here, E =3

Good for capturing
temporal locality.

If all
ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for

replacement?
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Cache replacement policies for associative caches

FIFO: First-in, first-out
» Evict the cache line that was placed the longest ago.

» Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

» Evict the cache line that was last accessed longest ago.

» Needs a counter on each cache line, and/or a global counter (e.g., program
counter).

15/19



Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

16/19



Policies for writes from CPU to memory

How to deal with write-hit?

> Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

> Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

Typical designs:

> Simple: write-through + no-write-allocate.

»> Complex: write-back + write-allocate.

How to deal with write-miss?

» No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

> Write-allocate. Complex. Write-misses will
not load block into cache.

READ / LOAD from memory: movq (0x00) %eax
WRITE / STORE to memory: movq %eax (0x00)
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READ / LOAD from memory: movq (0x00) %eax
WRITE / STORE to memory: movq %eax (0x00) 
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Multilevel cache hierarchies

Small fast caches nested inside large
Processor package slow caches

» L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

> L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

> L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

L3 unified cache
(shared by all cores)

’ Main memory ‘

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP Figure: Intel 2020 Gulftown die shot. Image
credir AnandTech 19/19
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