Caches: replacement policy, memory policy, and cache
hierarchies
Yipeng Huang
Rutgers University

April 8, 2021

119

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

2/19

Looking ahead

Class plan

1. Thursday, 4/8: PA5 cache simulator and performance released.
2. Thursday, 4/8: PA4 binary bomb lab due.
3. Monday, 4/12: Quiz due.

3/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

4/19

Cache placement policy (how to find data at address for read and
write hit)

tbits s bits bbits
Address: | [[]
i

Several designs for caches Ao o

Tag Setindex Block offset

» Fully associative cache
» Direct-mapped cache

L m = 48bits, or 64bits, or 32bits
» E-way set-associative cache

Cache design options use m-bit
memory addresses differently
> t-bit tag
» s-bit set index

» b-bit block offset Figure: Memory addresses. Image credit
CS:APP

5/19

Yipeng Huang
m = 48bits, or 64bits, or 32bits

Fully associative cache

s=0; S=2/s=1 sets, therefore, no hash
function involved

valid? + match: assume yes = hit

Address of int:

r t bits 100
1
Cees] LRG|
|
block offset
eways § [Cee] 1|
[ee] CLREGLEG 0|
\

Figure: Fully associative cache. Image credit CS:APP

Strengths

» Blocks can go into any
of E-ways.

» Hit rate is only limited
by total capacity.

Weaknesses

» Searching across all
valid tags is
expensive.

» Figuring out which
block to evict on
read /write miss is
also expensive.

6/19

Yipeng Huang
s=0; S=2^s=1 sets, therefore, no hash function involved

Direct-mapped cache

E=1
, Add
I tag ||0|1|2|3|4|5|6|7|| t bits E)esgl 100
] [||o|1]z|s|4|slel7ll—ﬁ‘ndset
S=25sets

[Coe] CLEEELEE|
[Cee] CEERLEE|

\

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

» Simple to implement.

» No need to search
across tags.

Weaknesses

» Can lead to surprising
thrashing of cache
with unfortunate
access patterns.

» Unexpected conflict
misses independent of
cache capacity.

7/19

Yipeng Huang
E=1

Direct-mapped cache

(Address
[Coe] LLEL)
[e ||o|1|z|s|4|s|e|v||—ﬁ‘ndset , .
§= 25 sets < Let’s see textbook slides
[[||°|1|2|3|4|5|6|7|l for a simulation
oo | CLEEGL 0|

\

Figure: Direct-mapped cache. Image credit CS:APP

8/19

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

Figure: Direct-mapped cache. Image credit CS:APP

1 valid bit ttag bits
per line per line

B =2bbytes
per cache block

[Vaiia] [Tag J[o[1] -~ [B1]
Vaiia] [Tag J[o[1] - [51]

[vaia] [7eg J[o 1] — [51]
[vaia] [Tag][0 [1] — [81]

[vaiia] [Tag J[o 1] - [B4]
Vaiia] [Tag J[0[] -~ [B]

Cache size: C =B x E x S data bytes

} E lines per set

Strengths

» Blocks can go into any

of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

Only need to search
across E tags. Avoids
costly searching
across all valid tags.

Avoids conflict misses
due to unfortunate
access patterns.

9/19

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

1 valid bit ttag bits
per line per line

B =2bbytes

per cache block

] [g (o [] (o
ere]) [7] (o [11~ [o1]
] [JLo [o
vere] [T][0 [+]~ [o1]
e [7os Lo [T o]
ere] [7) [0 [1] [51]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:

>

>

C = 32KB L1 data cache
per core

S = 64 = 2° sets/cache
(s = 6 bits)

> E=8=2%ways/set
> B = 64 = 2% bytes/block

(b = 6 bits)

> Assuming memory

addresses are m = 48,
then tag size
t=m-s—b=
48 — 6 — 6 =36 bits.

10/19

E-way set-associative cache

porine perine. Doliones
fie] [7o J[o [] - 1]
% | eta) [g J Lo [+ 1~ [o1]
o] [g Lo 11 o]
sezmst " |] [)0 [T ool
] [Jo [1= o
% ane] [1[0 (1] Jo1]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

11/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

12/19

Direct-mapped cache

-

Address
[Coe] CLEERLEEL|

0] [||o|1|z|a|4|s|e|v||—ﬁ‘ndset

[Cee] CEEELEE|
B G | CLLEGLGLE|

S=2s sets<

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

» The number of sets in

cache is
S=25=22—-4
A hash function that

limits exactly where a
block can go.

In direct-mapped
cache, blocks can go
into only one of E =1
way.

No cache replacement
policy is needed.

13/19

Associative caches

E ways <

valid? + match: assume yes = hit

Address of int:

-

1
[ee] GLEGLEG0|
|

t bits 100

[ee] GLREGLEG 0|

Cee] LLEEGLL]|

\

block offset

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

>

>
>

>

Blocks can go into any
of E ways

Here, E =3

Good for capturing
temporal locality.

If all
ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for

replacement?
14/19

Cache replacement policies for associative caches

FIFO: First-in, first-out
» Evict the cache line that was placed the longest ago.

» Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

» Evict the cache line that was last accessed longest ago.

» Needs a counter on each cache line, and/or a global counter (e.g., program
counter).

15/19

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

16/19

Policies for writes from CPU to memory

How to deal with write-hit?

> Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

> Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

Typical designs:

> Simple: write-through + no-write-allocate.

»> Complex: write-back + write-allocate.

How to deal with write-miss?

» No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

> Write-allocate. Complex. Write-misses will
not load block into cache.

READ / LOAD from memory: movq (0x00) %eax
WRITE / STORE to memory: movq %eax (0x00)

17/19

Yipeng Huang
READ / LOAD from memory: movq (0x00) %eax
WRITE / STORE to memory: movq %eax (0x00)

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

18/19

Multilevel cache hierarchies

Small fast caches nested inside large
Processor package slow caches

» L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

> L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

> L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

L3 unified cache
(shared by all cores)

’ Main memory ‘

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP Figure: Intel 2020 Gulftown die shot. Image
credir AnandTech 19/19

	Announcements
	Cache placement policy (how to find data at address for read and write hit)
	Fully associative cache
	Direct-mapped cache
	Set-associative cache

	Cache replacement policy (how to find space for read and write miss)
	Direct-mapped cache need no cache replacement policy
	Associative caches need a cache replacement policy (e.g., FIFO, LRU)

	Policies for writes from CPU to memory
	Multilevel cache hierarchies

