
1/21

Caches: PA5 quickstart, metrics, cache friendly code

Yipeng Huang

Rutgers University

April 13, 2021

2/21

Table of contents
Announcements

PA5: Simulating a cache and optimizing programs for caches

Cache design parameters
Cache placement policy (how to find data at address for read and write hit)
Cache replacement policy (how to find space for read and write miss)

Direct-mapped caches need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Multilevel cache hierarchies

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache-friendly code
Loop interchange
Cache blocking

3/21

Looking ahead

Class plan

1. Today, Tuesday, 4/13: Finalize cache hierarchy.
2. Thursday, 4/15: Digital logic. Reading assignment: CS:APP Chapter 4.2.

Recommended reading: Patterson & Hennessy, Computer organization and
design, appendix on "The Basics of Logic Design." Available online via
Rutgers Libraries.

3. PA5 now out. Due Monday, 4/26.

4/21

Table of contents
Announcements

PA5: Simulating a cache and optimizing programs for caches

Cache design parameters
Cache placement policy (how to find data at address for read and write hit)
Cache replacement policy (how to find space for read and write miss)

Direct-mapped caches need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Multilevel cache hierarchies

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache-friendly code
Loop interchange
Cache blocking

5/21

PA5: Simulating a cache and optimizing programs for caches

Write a cache simulator
1. fullyAssociative
2. directMapped
3. setAssociative

Optimize some code for better cache performance

1. cacheBlocking
2. cacheOblivious

6/21

PA5: Simulating a cache and optimizing programs for caches

A tour of files in the package

I trace files
I csim-ref

7/21

Table of contents
Announcements

PA5: Simulating a cache and optimizing programs for caches

Cache design parameters
Cache placement policy (how to find data at address for read and write hit)
Cache replacement policy (how to find space for read and write miss)

Direct-mapped caches need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Multilevel cache hierarchies

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache-friendly code
Loop interchange
Cache blocking

8/21

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

I Fully associative cache
I Direct-mapped cache
I E-way set-associative cache

Cache design options use m-bit
memory addresses differently

I t-bit tag
I s-bit set index
I b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP

9/21

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

I The number of sets in
cache is
S = 2s = 22 = 4.

I A hash function that
limits exactly where a
block can go.

I In direct-mapped
cache, blocks can go
into only one of E = 1
way.

I No cache replacement
policy is needed.

10/21

Associative caches

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

I Blocks can go into any
of E ways

I Here, E = 3
I Good for capturing

temporal locality.
I If all

ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for
replacement?

11/21

Cache replacement policies for associative caches

FIFO: First-in, first-out
I Evict the cache line that was placed the longest ago.
I Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

I Evict the cache line that was last accessed longest ago.
I Needs a counter on each cache line, and/or a global counter (e.g., program

counter).

12/21

Policies for writes from CPU to memory
How to deal with write-hit? How to deal with write-miss?

I Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

I No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

I Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

I Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:
I Simple: write-through + no-write-allocate.
I Complex: write-back + write-allocate.

13/21

Multilevel cache hierarchies

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 0!

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 3!

…!

L3 unified cache!
(shared by all cores)!

Main memory!

Processor package!

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

I L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

I L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

I L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

14/21

Table of contents
Announcements

PA5: Simulating a cache and optimizing programs for caches

Cache design parameters
Cache placement policy (how to find data at address for read and write hit)
Cache replacement policy (how to find space for read and write miss)

Direct-mapped caches need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Multilevel cache hierarchies

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache-friendly code
Loop interchange
Cache blocking

15/21

Cache hits

Memory access is serviced from cache

I Hit rate = Numberofhits
Numberofmemoryaccesses

I Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)

16/21

Cache misses: metrics

Memory access cannot be serviced from cache

I Miss rate = Numberofmisses
Numberofmemoryaccesses

I Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

I Average memory access time = hit time + miss rate × miss penalty

17/21

Cache misses: Classification

Compulsory misses

I First access to a block of memory will miss because cache is cold.

Conflict misses
I Multiple blocks map (hash) to the same cache set.
I Fully associative caches have no such conflict misses.

Capacity misses

I Occurs when the set of active cache blocks (working set) is larger than the
cache.

I Direct mapped caches have no such capacity misses.

18/21

Table of contents
Announcements

PA5: Simulating a cache and optimizing programs for caches

Cache design parameters
Cache placement policy (how to find data at address for read and write hit)
Cache replacement policy (how to find space for read and write miss)

Direct-mapped caches need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Multilevel cache hierarchies

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache-friendly code
Loop interchange
Cache blocking

19/21

Cache-friendly code

Algorithms can be written so that
they work well with caches

I Maximize hit rate
I Minimize miss rate
I Minimize eviction counts

Advanced optimizing compilers can
automatically make such
optimizations

I GCC optimizations
I https:

//gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

I -floop-interchange

I -floop-block

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

20/21

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality"

I In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler flag -floop-interchange

and -O3

21/21

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality"

I In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler flag -floop-block. But it is

not part of default optimizations such as -O3 so you have to remember to set
it.

	Announcements
	PA5: Simulating a cache and optimizing programs for caches
	Cache design parameters
	Cache placement policy (how to find data at address for read and write hit)
	Cache replacement policy (how to find space for read and write miss)
	Policies for writes from CPU to memory
	Multilevel cache hierarchies

	Cache performance metrics: hits, misses, evictions
	Cache hits
	Cache misses

	Cache-friendly code
	Loop interchange
	Cache blocking

