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Looking ahead

Class plan

1. Today, Tuesday, 4/13: Finalize cache hierarchy.
2. Thursday, 4/15: Digital logic. Reading assignment: CS:APP Chapter 4.2.

Recommended reading: Patterson & Hennessy, Computer organization and
design, appendix on "The Basics of Logic Design." Available online via
Rutgers Libraries.

3. PA5 now out. Due Monday, 4/26.
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PA5: Simulating a cache and optimizing programs for caches

Write a cache simulator
1. fullyAssociative
2. directMapped
3. setAssociative

Optimize some code for better cache performance

1. cacheBlocking
2. cacheOblivious
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PA5: Simulating a cache and optimizing programs for caches

A tour of files in the package

I trace files
I csim-ref
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Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

I Fully associative cache
I Direct-mapped cache
I E-way set-associative cache

Cache design options use m-bit
memory addresses differently

I t-bit tag
I s-bit set index
I b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP
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Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

I The number of sets in
cache is
S = 2s = 22 = 4.

I A hash function that
limits exactly where a
block can go.

I In direct-mapped
cache, blocks can go
into only one of E = 1
way.

I No cache replacement
policy is needed.
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Associative caches

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

I Blocks can go into any
of E ways

I Here, E = 3
I Good for capturing

temporal locality.
I If all

ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for
replacement?
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Cache replacement policies for associative caches

FIFO: First-in, first-out
I Evict the cache line that was placed the longest ago.
I Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

I Evict the cache line that was last accessed longest ago.
I Needs a counter on each cache line, and/or a global counter (e.g., program

counter).
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Policies for writes from CPU to memory
How to deal with write-hit? How to deal with write-miss?

I Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

I No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

I Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

I Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:
I Simple: write-through + no-write-allocate.
I Complex: write-back + write-allocate.
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Multilevel cache hierarchies

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 0!

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 3!

…!

L3 unified cache!
(shared by all cores)!

Main memory!

Processor package!

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

I L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

I L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

I L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech
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Cache hits

Memory access is serviced from cache

I Hit rate = Numberofhits
Numberofmemoryaccesses

I Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)
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Cache misses: metrics

Memory access cannot be serviced from cache

I Miss rate = Numberofmisses
Numberofmemoryaccesses

I Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

I Average memory access time = hit time + miss rate × miss penalty
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Cache misses: Classification

Compulsory misses

I First access to a block of memory will miss because cache is cold.

Conflict misses
I Multiple blocks map (hash) to the same cache set.
I Fully associative caches have no such conflict misses.

Capacity misses

I Occurs when the set of active cache blocks (working set) is larger than the
cache.

I Direct mapped caches have no such capacity misses.
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Cache-friendly code

Algorithms can be written so that
they work well with caches

I Maximize hit rate
I Minimize miss rate
I Minimize eviction counts

Advanced optimizing compilers can
automatically make such
optimizations

I GCC optimizations
I https:

//gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

I -floop-interchange

I -floop-block

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality"

I In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler flag -floop-interchange

and -O3
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Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality"

I In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler flag -floop-block. But it is

not part of default optimizations such as -O3 so you have to remember to set
it.
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