
1/15

Caches: PA5 part 2, cache friendly code, digital logic

Yipeng Huang

Rutgers University

April 15, 2021

2/15

Table of contents

Announcements

PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

3/15

Looking ahead

Class plan

1. PA5 now out. Due Monday, 4/26.
2. Short quiz 8 now out. Due Monday, 4/19.
3. Digital logic. Reading assignment: CS:APP Chapter 4.2. Recommended

reading: Patterson & Hennessy, Computer organization and design, appendix
on "The Basics of Logic Design." Available online via Rutgers Libraries.

4/15

Table of contents

Announcements

PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

5/15

PA5: Optimizing programs for caches

Optimize some code for better cache performance

1. cacheBlocking
2. cacheOblivious

6/15

PA5: Optimizing programs for caches

A tour of files in the package

I Baseline implementations: matMul, matTrans.
I Your optimized implementations: cacheBlocking, cacheOblivious.
I What the autograder.py does:

1. Testing for correctness.
2. Getting the memory trace.
3. Comparing your performance against the baseline.

7/15

Table of contents

Announcements

PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

8/15

Cache-friendly code

Algorithms can be written so that
they work well with caches:

I Maximize hit rate.
I Minimize miss rate.
I Minimize eviction counts.

Do so by:

I Increasing spatial locality.
I Increasing temporal locality.

A few specific techniques:

I Loop interchange.
I Cache blocking.
I Cache-oblivious algorithm

implementation.

9/15

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality"

I Loop interchange increases spatial locality.
I In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler flag -floop-interchange

and -O3.

10/15

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality"

I Cache blocking increases temporal locality.
I In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler flag -floop-block. But it is

not part of default optimizations such as -O3 so you have to remember to set
it.

11/15

Cache oblivious algorithms

The challenge in writing code / compiling programs to take advantage of
caches:
I Programmers do not easily have information about target machine.
I Compiling binaries for every envisioned target machine is costly.

12/15

Matrix transpose baseline algorithm: iteration

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3



B = Aᵀ =


a0,0 a1,0 a2,0 a3,0
a0,1 a1,1 a2,1 a3,1
a0,2 a1,2 a2,2 a3,2
a0,3 a1,3 a2,3 a3,3



1 for (size_t i=0; i<n; i++) {
2 for (size_t j=0; j<n; j++) {
3 B[j*n + i] = A[i*n + j];
4 }
5 }

13/15

Matrix transpose via recursion

A =

[
A0,0 A0,1
A1,0 A1,1

]
=


a0,0 a0,1
a1,0 a1,1

a0,2 a0,3
a1,2 a1,3

a2,0 a2,1
a3,0 a3,1

a2,2 a2,3
a3,2 a3,3



B = Aᵀ =

[
Aᵀ

0,0 Aᵀ
1,0

Aᵀ
0,1 Aᵀ

1,1

]
=


a0,0 a1,0
a0,1 a1,1

a2,0 a3,0
a2,1 a3,1

a0,2 a1,2
a0,3 a1,3

a2,2 a3,2
a2,3 a3,3



Strategy:

I Divide and conquer large matrix to
transpose into smaller transpositions.

I After some recursion, problem will fit
well inside cache capacity.

I Once enough locality exists withing
subroutine, switch to plain iterative
approach.

Advantages:

I No need to know about cache capacity
and parameters beforehand.

I Works well with deep multilevel cache
hierarchies: different amounts of
locality for each cache level.

Yipeng Huang
32x32 transpose -> 4 separate 16x16 transpose tasks
16x16 -> 4 separate 8x8
8x8 -> 4 separate 4x4
4x4 -> 4 separate 2x2

14/15

Table of contents

Announcements

PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

15/15

Memory hierarchy implications for software-hardware abstraction
It is not entirely true the architecture can hide details of microarchitecture
Even less true going forward. What to do?

Application level recommendations

I Use industrial strength, optimized libraries compiled for target machine.

I Lapack, Linpack, Matlab, Python SciPy, NumPy...

I https://people.inf.ethz.ch/markusp/teaching/
263-2300-ETH-spring11/slides/class08.pdf

Algorithm level recommendations
Deploy cache-oblivious algorithm implementations.

Compiler level recommendations

I Enable compiler optimizations—e.g., -O3, -floop-interchange, -floop-block.

I https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Announcements
	PA5: Optimizing programs for caches
	Cache-friendly code
	Loop interchange
	Cache blocking
	Cache oblivious algorithms

	Memory hierarchy implications for software-hardware abstraction

