Caches: PA5 part 2, cache friendly code, digital logic

Yipeng Huang
Rutgers University

April 15,2021

1/15

Table of contents

Announcements
PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

2/15

Looking ahead

Class plan
1. PA5 now out. Due Monday, 4/26.

2. Short quiz 8 now out. Due Monday, 4/19.

3. Digital logic. Reading assignment: CS:APP Chapter 4.2. Recommended
reading: Patterson & Hennessy, Computer organization and design, appendix
on "The Basics of Logic Design." Available online via Rutgers Libraries.

3/15

Table of contents

Announcements
PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

4/15

PA5: Optimizing programs for caches

Optimize some code for better cache performance

1. cacheBlocking
2. cacheOblivious

5/15

PA5: Optimizing programs for caches

A tour of files in the package

» Baseline implementations: matMul, matTrans.

» Your optimized implementations: cacheBlocking, cacheOblivious.

» What the autograder.py does:
1. Testing for correctness.
2. Getting the memory trace.
3. Comparing your performance against the baseline.

6/15

Table of contents

Announcements
PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

7/15

Cache-friendly code

Algorithms can be written so that
they work well with caches:

» Maximize hit rate.
» Minimize miss rate.

» Minimize eviction counts.

Do so by:

» Increasing spatial locality.
» Increasing temporal locality.

A few specific techniques:
» Loop interchange.

» Cache blocking.

» Cache-oblivious algorithm
implementation.

8/15

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality”

>
>

>

Loop interchange increases spatial locality.

In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

In practice, programmers do not have to worry about this optimization.

Optimized automatically in GCC by compiler flag ~-floop-interchange
and -03.

9/15

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality”

| 2
| 2

>

Cache blocking increases temporal locality.

In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

In practice, programmers do not have to worry about this optimization.

Optimized automatically in GCC by compiler flag ~floop-block. Butitis
not part of default optimizations such as ~03 so you have to remember to set
it.

10/15

Cache oblivious algorithms

The challenge in writing code / compiling programs to take advantage of
caches:

» Programmers do not easily have information about target machine.

» Compiling binaries for every envisioned target machine is costly.

11/15

Matrix transpose baseline algorithm: iteration

_110,0
ai,0
az.o

1 43,0
a0,0
ap,1
ao,2

| 70,3

ap,1
a1,1
az1
as1

ai,0
ai
a2
a13

ap,2
a2
a2
aso

2.0
az1
a2
a3

110,3_
a13
a3
as;3 |
as o
a31
as2

as3 |

size_t 1i=0;
(size_t 3=0;

Jxn + 1

]

i<n; i++)

Al

j<n; J++
ixn + j

{
)
1

{

12/15

Matrix transpose via recursion

Strategy:

» Divide and conquer large matrix to
transpose into smaller transpositions.

> After some recursion, problem will fit

)) [a00 @01 | a0z a03 | well inside cache capacity.
a . . s
A= ﬁo,o govl — %0 H1 |42 43 > Once enough locality exists withing
Lo 41 f20 1 |22 23 subroutine, switch to plain iterative
1430 431 asp ass | approach.
ap,0 41,0 azo 4aspo
[Ajo Al pp M, | A21 431
B=AT = A(T)»O A%O =5 - : : : Advantages:
1410,1 1,1 Ap2 di12 |d22 432
403 M3 | 423 33 | » No need to know about cache capacity
32x32 transpose -> 4 separate 16x16 transpose tasks and parameters beforehand.

16x16 -> 4 separate 8x8
8x8 -> 4 separate 4x4
4x4 -> 4 separate 2x2

» Works well with deep multilevel cache

hierarchies: different amounts of
locality for.each cache level.

13/15

Yipeng Huang
32x32 transpose -> 4 separate 16x16 transpose tasks
16x16 -> 4 separate 8x8
8x8 -> 4 separate 4x4
4x4 -> 4 separate 2x2

Table of contents

Announcements
PA5: Optimizing programs for caches

Cache-friendly code
Loop interchange
Cache blocking
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

14/15

Memory hierarchy implications for software-hardware abstraction

It is not entirely true the architecture can hide details of microarchitecture

Even less true going forward. What to do?

Application level recommendations

» Use industrial strength, optimized libraries compiled for target machine.
» Lapack, Linpack, Matlab, Python SciPy, NumPy...

» https://people.inf.ethz.ch/markusp/teaching/
263-2300-ETH-springll/slides/class08.pdf

Algorithm level recommendations
Deploy cache-oblivious algorithm implementations.

Compiler level recommendations

» Enable compiler optimizations—e.g., -03, ~floop-interchange, ~-floop-block.

» https://gcc.gnu.org/onlinedocs/gcc/Optimize—-Options.html
15/15

https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Announcements
	PA5: Optimizing programs for caches
	Cache-friendly code
	Loop interchange
	Cache blocking
	Cache oblivious algorithms

	Memory hierarchy implications for software-hardware abstraction

