Digital logic: Functional completeness, logic simplification

Yipeng Huang

Rutgers University
April 22, 2021

Table of contents

Announcements

Combinational logic
Definitions for more-than-2-input gates

Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal

Basic algorithms for logic simplification

Looking ahead

Class plan

1. PA5 due Monday, $4 / 26$.

Table of contents

Announcements

Combinational logic
Definitions for more-than-2-input gates

Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal

Basic algorithms for logic simplification

Combinational vs. sequential logic

Combinational logic

- No internal state nor memory
- Output depends entirely on input
- Examples: NOT, AND, NAND, OR, NOR, XOR, XNOR gates, decoders, multiplexers.

Sequential logic

- Has internal state (memory)
- Output depends on the inputs and also internal state
- Examples: latches, flip-flops, Mealy and Moore machines, registers, pipelines, SRAMs.

More－than－2－input AND gate

A	B	C	$A B C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Table：Truth table for three－input AND gate

More-than-2-input OR gate

A	B	C	$A+B+C$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Table: Truth table for three-input AND gate

Table of contents

Announcements

Combinational logic
Definitions for more-than-2-input gates

Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal

Basic algorithms for logic simplification

The set of logic gates $\{\mathrm{NOT}, \mathrm{AND}, \mathrm{OR}\}$ is universal

The set of logic gates $\{\mathrm{NOT}, \mathrm{AND}, \mathrm{OR}\}$ is universal

- Any truth table can
be expressed as sum of products form.

Logical Completeness

- Write each row with output 1 as a product (minterm).
- Sum the products (minterm).
- Forms a disjunctive normal form (DNF).
- $D=\bar{A} B \bar{C}+A \bar{B} C$
- Always only needs NOT, AND, OR gates.
- Supplementary slides example..

Can implement ANY truth table with AND, OR, NOT.

A	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Sum of products
OR of AND clauses

16

The NAND gate is universal

AND gate as two NAND gates

A	\bar{A}	$A A$	$\overline{A A}$
0	1	0	1
1	0	1	0

Table: $\bar{A}=\overline{A A}$
NOT gate as a single NAND gate

$$
\begin{array}{c|l|ll}
A & \bar{A} & A A & \overline{A A} \\
\hline 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}
$$

A	B	$A B$	$\overline{A B}$	$\overline{\overline{A B}}$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	0	1

Table: $A B=\overline{\overline{A B}}$

The NAND gate is universal

OR gate as three NAND gates

A	B	\bar{A}	\bar{B}	$\bar{A} \bar{B}$	$A+B$	$\overline{A+B}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

Table: $\bar{A} \bar{B}=\overline{A+B}$

The NOR gate is universal

OR gate as two NOR gates

$$
\begin{array}{c|c|ll}
A & \bar{A} & A+A & \overline{A+A} \\
\hline 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}
$$

Table: $\bar{A}=\overline{A+A}$

A	B	$A+B$	$\overline{A+B}$	$\overline{\overline{A+B}}$
0	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	0	1

Table: $A B=\overline{\overline{A B}}^{\text {Typo }}$

The NOR gate is universal

De Morgan's Law

AND gate as three NOR gates

A	B	\bar{A}	\bar{B}	$\bar{A}+\bar{B}$	$A B$	$\overline{A B}$
0	0	1	1	1	0	1
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	0	1	0

Table: $\bar{A}+\bar{B}=\overline{A B}$

Table of contents

Announcements

Combinational logic
Definitions for more-than-2-input gates

Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal

Basic algorithms for logic simplification

