Digital logic: Functional completeness, logic simplification

Yipeng Huang

Rutgers University

April 22, 2021

Announcements

Combinational logic

Definitions for more-than-2-input gates

Functional completeness

The set of logic gates {NOT, AND, OR} is universal The NAND gate is universal The NOR gate is universal

◆□▶ < @ ▶ < E ▶ < E ▶ ○ 2/15</p>

Looking ahead

Class plan

1. PA5 due Monday, 4/26.

Announcements

Combinational logic

Definitions for more-than-2-input gates

Functional completeness

The set of logic gates {NOT, AND, OR} is universal The NAND gate is universal The NOR gate is universal

(ロ)、(型)、(E)、(E)、 E) の(で 4/15)

Combinational vs. sequential logic

Combinational logic

- No internal state nor memory
- Output depends entirely on input
- Examples: NOT, AND, NAND, OR, NOR, XOR, XNOR gates, decoders, multiplexers.

Sequential logic

- Has internal state (memory)
- Output depends on the inputs and also internal state
- Examples: latches, flip-flops, Mealy and Moore machines, registers, pipelines, SRAMs.

More-than-2-input AND gate

Table: Truth table for three-input AND gate

More-than-2-input OR gate

Α	В	С	A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Table: Truth table for three-input AND gate

Announcements

Combinational logic

Definitions for more-than-2-input gates

Functional completeness

The set of logic gates {NOT, AND, OR} is universal The NAND gate is universal The NOR gate is universal

(ロ)、(型)、(E)、(E)、 E) のQで 8/15

The set of logic gates {NOT, AND, OR} is universal

Figure: Source: CS:APP

9/15

The set of logic gates {NOT, AND, OR} is universal

 Any truth table can be expressed as sum of products form. Or'ing logical clauses consisting of and's

Logical Completeness

- Write each row with output 1 as a product (minterm).
- Sum the products (minterm).
- Forms a disjunctive normal form (DNF).
- $\blacktriangleright D = \overline{A}B\overline{C} + A\overline{B}C$
- Always only needs NOT, AND, OR gates.
- Supplementary slides example...

10/15

The NAND gate is universal

AND gate as two NAND gates

NOT gate as a single NAND gate

A	В	AB	\overline{AB}	$\overline{\overline{AB}}$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	0	1

Table: $AB^{\flat} = \overline{\overline{AB}}^{\flat} = \overline{P} = P \otimes P \otimes P$ 11/15

The NAND gate is universal

De Morgan's Law

OR gate as three NAND gates

The NOR gate is universal

OR gate as two NOR gates

NOT gate as a single NOR gate

 $A \longrightarrow AB =$

Table: $\overline{AB} = \overline{\overline{AB}}^{Typo} = 200 \text{ m}$ 13/15

The NOR gate is universal

De Morgan's Law

AND gate as three NOR gates

Announcements

Combinational logic

Definitions for more-than-2-input gates

Functional completeness

The set of logic gates {NOT, AND, OR} is universal The NAND gate is universal The NOR gate is universal

(ロ) (四) (三) (三) (三) (15/15)