Quantum Computing: Programs and Systems

Wednesday, September 1, 2021
Rutgers University
Yipeng Huang

How does a computer work?

What are the parts of a computer?

What are our fundamental assumptions about how computers work / what computers are made of?

Some show and tell

• Non-digital, non-discrete time computation

Analog computers

Biological computers

Quantum chemistry & high energy physics

General purpose computation

High dimensional nonlinear optimization

Computational neuroscience & pattern recognition

Fluid dynamics & plasma physics

Quantum chemistry & high energy physics

General purpose computation

Classical digital von Neuman architectures

High dimensional nonlinear optimization

Computational neuroscience & pattern recognition

Fluid dynamics & plasma physics

	1940s	1950s	1960s	1970s	1980s	1990s	2000s	2010s
Analog continuous- time computing	Analog computers for rocket and artillery controllers.	Analog computers for field problems.	1 st transistorized analog computer.	Analog-digital hybrid computers.				
Digital discrete- time computing	Turing's Bomba.	1 st transistorized digital computer.	Moore's law projection for transistor scaling.	Dennard's scaling for transistor power density.	VLSI democratized.	FPGAs introduced.	End of Dennard's scaling. CPUs go multicore.	Cloud FPGAs: Microsoft Catapult. Amazon F1.
						Heterogenous architectures		ctures
	Stored program computer.	Microprogram ming.	Instruction set architecture.	Reduced instruction set computers.		GPUs introduced.	Nvidia introduces CUDA.	ASICs: Google TPUs. DE Shaw Research Anton.
	Trong	Transistor scaling and architectural abstractions Scaling challenges drive						rivo

Transistor scaling and architectural abstractions drive digital revolution, make analog alternatives irrelevant

Scaling challenges drive heterogenous architectures

Analog continuous- time computing	Analog computers for rocket and artillery controllers.	Analog computers for field problems.	1st transistorized analog computer.	Analog-digital hybrid computers.		Analog neural networks proposed.	VLSI analog computers proposed.	Columbia University prototype analog accelerators.
Digital discrete- time computing	Turing's Bomba.	1 st transistorized digital computer.	Moore's law projection for transistor scaling.	Dennard's scaling for transistor power density.		hallenges in date revisiting a	ligital scaling analog alterna CPUs go multicore.	tive Amazon F
	Stored program computer.	Microprogram ming.	Instruction set architecture.			_	ital model of c antum possib	
Quantum computing					Feynman. "Simulating Physics with Computers."	Shor's algorithm. Demo of ion trap quantum computation.	Demo of super- conductor quantum computation.	IBM quantum cloud. Google quantum supremacy.

1970s

1980s

1990s

2000s

2010s

1940s

1950s

1960s

What this class is about

Graduate seminar on latest developments in quantum computer engineering

What is quantum computer engineering??

- realizing <u>quantum algorithms</u>
- on prototype quantum computers
- —a rapidly growing field!!

Goals of the course:

- explore open-source tools for using quantum computers
- read and discuss recent developments
- build foundation for you to pursue research or to be experts in industry

Motivation: Race to practical quantum computation

Quantum algorithms for chemical simulations

- Calculate properties of molecules directly from governing equations
- Use quantum mechanical computer to simulate quantum mechanics!

Shor's quantum algorithm for factoring integers

- Factor large integers to primes in polynomial time complexity
- Surpasses any known classical algorithm taking exponential time complexity

Hundreds of algorithms @ QuantumAlgorithmZoo.org

Motivation: Race to practical quantum computation

Superconducting qubits

IBM

Google

Intel

Rigetti

University of Maryland / IonQ

Many research teams now competing towards more reliable and more numerous qubits.

Broad view of open challenges in quantum computer engineering

Figure 1. Overview of the quantum computer system stack.

A Microarchitecture for a Superconducting Quantum Processor. Fu et al.

- A complete view of full-stack quantum computing.
- In short, challenges are in finding and building abstractions.
- In each layer, why we don't or can't have good abstractions right now.
- Recent and rapidly developing field of research.

Outline

• Curiosity: digital, discrete time abstractions; unconventional computing

• Community: welcome to class; prerequisites; introductions

• Learning: preview of the syllabus; quantum computer systems stack

• Expectations: reading; programming; presentations

Outline

• Curiosity: digital, discrete time abstractions; unconventional computing

• Community: welcome to class; prerequisites; introductions

• Learning: preview of the syllabus; quantum computer systems stack

• Expectations: reading; programming; presentations

Prerequisites

Algorithms: time and space complexity of algorithms

Complex numbers

Linear algebra: vector, matrix notation and multiplication. Matrix properties.

Probability and statistics

Python programming: working with Git, extending open source projects, Jupyter notebooks

Access to iLab CS computing resources: https://resources.cs.rutgers.edu/

Useful, but not strictly required

Quantum information science course

- Bra-ket, gates, circuits, measurement, superposition, entanglement
- 2021 Fall: ECE 493. Soljanin. Quantum Computing Algorithms.
- 2022 Spring: Physics 421. Schnetzer. An Introduction to Quantum Comp

Quantum mechanics

Problems and methods for quantum chemistry

My name is:

How far along I am in my studies:

Why I am interested in quantum computing:

Something I am interested in computer science / engineering broadly:

Yipeng

- Assistant professor, Rutgers, 2020 -
- Postdoc, Princeton, 2018 2020
- PhD, Columbia, 2018

Nonlinear scientific computation

Quantum simulation & optimization

New and extreme workload challenges

Multicore CPUs, GPUs, FPGAs, ASICs, analog, quantum, etc.

Limitations in transistor scaling

Dennard's scaling already ended

Moore's law increasingly costly to sustain

Open challenges in emerging architectures:

Problem abstractions

How do you accurately solve big problems?

Programming abstractions

Can you borrow ideas from conventional computing?

Architecture abstractions

How to interface with the unconventional hardware?

My work in problem and programming abstractions for emerging architectures

Continuous-time analog	Accelerator chip prototype	Support for solving differential equations	Support for solving linear algebra	Support for solving nonlinear equations	Fluid dynamics application feasibility study	
scientific computation	Successful hand-off to MIT, Ulm University, and two companies for further research.	JSSC 2016 (co-authored).	ISCA 2016. One of twelve Micro Top Picks best architecture papers of 2016.	MICRO 2017. Micro Top Picks honorable mention.	PI for DARPA STTR phase 1 grant. Thesis nominated for ACM dissertation award.	
Quantum algorithm		Assertions for quantum program patterns and bugs	Graphical model inference for quantum program simulation and analysis	Analog computing support for quantum control & measurement		
debugging & simulation		ISCA 2019. mentees placed at MICRO SRC. IBM Qiskit open- source contribution.				

Requirements for supporting workloads

- How to do problems?
- How to get high accuracy solutions?
- How to handle large problem sizes?

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} - \frac{1}{\text{Re}}\nabla^2 \vec{u} = RHS$$

Numerical primitives as architectural abstractions

Analog-digital support for differential equations

Analog-digital support for linear algebra

Analog-digital support for nonlinear equations

Unconventional architecture hardware prototyping

Prototype continuous-time analog accelerator

Chemistry simulations from governing equations

Quantum computers as quantum mechanics simulator

Shor's algorithm for factoring integers

Surpasses any known classical algorithm

Hundreds more near-term and far-future algorithms

QuantumAlgorithmZoo.org

Assertions for quantum program patterns and bugs

ISCA 2019.
IBM Qiskit open-source contribution.

Graphical model inference for quantum program simulation and analysis

ASPLOS 2021.
Google Cirq simulation backend publicly available.

Analog computing support for quantum control & measurement

Now-viable quantum prototypes

Superconducting qubits

IBM, Google, Rigetti, ...

Trapped ion qubits

lonQ, UMD, ...

Dozens of candidate qubit technologies

May yet surpass current leaders in capacity and reliability

Why I am excited about quantum computing:

• Broad field, rapidly changing, many new topics

Something I am interested in computer science / engineering broadly:

New paradigms for computing

Welcome all to class

We welcome in this class diverse backgrounds and viewpoints spanning various dimensions:

 race, national origin, gender, sexuality, disability status, class, religious beliefs

We will treat each other with respect and strive to create a safe environment to exchange questions and ideas.

Outline

• Curiosity: digital, discrete time abstractions; unconventional computing

• Community: welcome to class; prerequisites; introductions

• Learning: preview of the syllabus; quantum computer systems stack

• Expectations: reading; programming; presentations

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Extracting success
- Prototypes

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Extracting success
- Prototypes

Semantic gap

Need languages, abstractions...

Tools gap

Need optimizing compilers, simulators, debuggers...

Infrastructure gap

Need more abundant, more reliable qubits...

Educational gap

Need researchers, students...

Quantum algorithms

GAP!

Quantum physical devices

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Extracting success
- Prototypes

What are variational algorithms and why are they important?

• It's like using a classical computer to train a quantum neural network.

What are variational algorithms and why are they important?

Source: Peruzzo et al., 2013

What are variational algorithms and why are they important? Use quantum & classical computation

What are variational algorithms and why are they important?

- It's like using a classical computer to train a quantum neural network.
- Quantum computer can be unreliable, needs 50-100 qubits, realizable in the near future.
- Most likely candidates for first demonstrations of useful quantum.
- Major examples include quantum approximate optimization algorithm (QAOA), variational quantum eigensolver (VQE).

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Extracting success
- Prototypes

Programming assignments

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Prototypes

Debates & presentations

Contentious topics in quantum computer engineering

Quantum programming: Verification vs. Debugging

Quantum/classical boundary: Prototypes vs. Simulation (Google vs. IBM)

Quantum device candidates: Superconductors vs. Ion traps

In this class, you will present the competing viewpoints in debate format

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Extracting success
- Prototypes

Research here at Rutgers

- Prof. Mario Szegedy, quantum algorithms, complexity theory
- Prof. Yipeng Huang, quantum program simulation and analysis
- Prof. Zheng Zhang, quantum circuit compilation
- Prof. Emina Soljanin, quantum communications
- Prof. Steve Schnetzer, high energy physics and quantum computing

Outline

• Curiosity: digital, discrete time abstractions; unconventional computing

• Community: welcome to class; prerequisites; introductions

- Learning: preview of the syllabus; quantum computer systems stack
- Expectations: reading; programming; presentations

Logistics

https://yipenghuang.com/teaching/2021-fall/

https://rutgers.instructure.com/courses/140409

Recommend that you attend live, in-person

Join via Zoom if you need to be outside of the classroom for any reason

Videos are recorded and posted

Office hours are Wednesdays 3pm, via Zoom

One of the few uppermost division classes you might take

Very different expectations from any other class

Components

- Programming assignments (50% of course grade)
- Reading, debates & presentations (50% of course grade)

Programming assignments

- Quantum approximate optimization algorithm for solving MAX-CUT
- Quantum variational eigensolver for calculating chemical properties
- Google Cirq open source quantum framework
- IBM Qiskit open source framework and IBM Q public prototypes

Reading, debates & presentations

How to read and summarize papers efficiently:

- Who cares, so what?
- Why prior work is insufficient.
- Key insight.
- Methodology.
- Findings.

Deeper evaluation of the reading:

- What are limitations of the science in the paper?
- Is the paper effectively communicated?
- What background knowledge is preventing me from fully understanding this paper?

What you can expect from this year's offering of this class

• CS 672 (CS seminar) \rightarrow CS 583 (systems topic) \rightarrow 400-level new course

More: gentle review of quantum computing fundamentals

More: programming examples and exercises

More: up-to-date selection of articles

Less: lecturing