Quantum computing fundamentals: one qubit

Yipeng Huang

Rutgers University

September 8, 2021

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ᠑ < ♡ 1/20

Announcements

Universal classical computing

A single qubit: the Hadamard gate, superposition, interference, measurement

The class so far

- 1. Introductions on Canvas discussions. Important for me and classmates to know your interests.
- 2. Reading: Preskill. "Quantum Computing in the NISQ era and beyond." Describes current state of quantum computing impact and development. Discuss by posting one question and one answer—can be anything.

Intermediate-term class plan

Where we are headed in first month

- 1. Fundamental rules of quantum computing
- 2. Basic quantum algorithms
- 3. Programming examples in Google Cirq
- 4. A NISQ algorithm: quantum approximate optimization algorithm

5. Programming assignment on QAOA in Cirq

Announcements

Universal classical computing

A single qubit: the Hadamard gate, superposition, interference, measurement

The binary abstraction

High, low voltage Adds resilience against noise.

Representation as a state vector

•
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$
 We pronounce this "ket" 0
• $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$ We pronounce this "ket" 1

The NOT gate

Matrix representation of NOT operator: $X = \sigma_X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$X |0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

$$X |1\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

The SWAP gate

Matrix representation of SWAP operator:
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$SWAP |00\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = |00\rangle$$
$$SWAP |10\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = |01\rangle$$

The CNOT gate

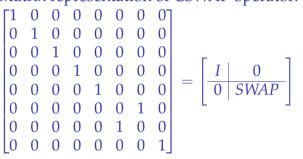
$$\begin{aligned} \text{Matrix representation of CNOT operator:} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ \bullet & CNOT |01\rangle &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = |01\rangle \\ \bullet & CNOT |11\rangle &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = |10\rangle \end{aligned}$$

The CSWAP gate

Matrix representation of CSWAP operator: (On the board)

The CSWAP gate

Matrix representation of CSWAP operator:

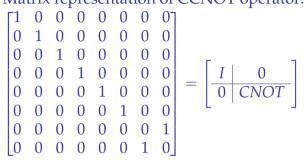


◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

11/20

The CCNOT (aka Toffoli) gate

Matrix representation of CCNOT operator:



Circuit diagram representation:

Exercise: prove that Rudolph, "Q is for Quantum," page 10, bottom figure equivalent to CCNOT

Universal classical computation

Toffoli (CCNOT) gate can represent all classical computation (How?)

Universal classical computation

Toffoli (CCNOT) gate can represent all classical computation

1. All Boolean expressions can be phrased as either CNF or DNF.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 14/20

- 2. AND, OR, and NOT operations are universal.
- 3. Either NAND or NOR are individually universal.
- 4. CCNOT implements NAND. (Feed $|1\rangle$ into target qubit).
- 5. So, CCNOT is universal for classical logic.

Announcements

Universal classical computing

A single qubit: the Hadamard gate, superposition, interference, measurement

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 15/20

The Hadamard gate

Matrix representation of Hadamard operator: $H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$

$$H |0\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$
$$H |1\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$

Superposition

Single qubit state

- $\blacktriangleright \ \alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
- Amplitudes $\alpha, \beta \in \mathbb{C}$
- $\blacktriangleright \ |\alpha|^2 + |\beta|^2 = 1$
- ► The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and encode qubits

- Polarization of light in different directions
- Electron spins (Intel solid state qubits)
- Atom energy states (UMD, IonQ ion trap qubits)
- Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and current), we pick (bottom) two for the binary abstraction.

Interference

Amplitudes can positively and negatively interfere

$$HH |0\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

$$HH |1\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

Measurement

These rules, states, and operators model real quantum phenomena

States in our examples cannot be merely classical or probabilistic

Double slit experiment

https://www.youtube.com/watch?v=Q1YqgPAtzho

Textbook formalism

For an introductory textbook on the quantum computing formalism, I recommend:

https://www.lassp.cornell.edu/mermin/qcomp/CS483.html

(ロ)、(同)、(目)、(目)、(目)、(19/20)

Announcements

Universal classical computing

A single qubit: the Hadamard gate, superposition, interference, measurement