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Announcements

The class so far
1. Be sure to keep up with class via session slides and recommended reading.
2. Practice quantum computing formalism: state vectors, unitary matrices,

tensor products.
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Intermediate-term class plan

Where we are headed in first month
1. Fundamental rules of quantum computing
2. Basic quantum algorithms
3. Programming examples in Google Cirq
4. A NISQ algorithm: quantum approximate optimization algorithm
5. Programming assignment on QAOA in Cirq
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Superposition

Special names for two common superposition states (with respect to
standard basis)
I |+〉 = H |0〉 = 1√

2
|0〉+ 1√

2
|1〉

I |−〉 = H |1〉 = 1√
2
|0〉 − 1√

2
|1〉
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Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform
Show that |+〉⊗n = 1

2n/2

∑2n−1
m=0 |m〉
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Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform
Show that |+〉⊗n = 1

2n/2

∑2n−1
m=0 |m〉

I Base case n = 1: |+〉⊗1 = |+〉 = 1√
2
|0〉+ 1√

2
|1〉 = 1

21/2

∑21−1
m=0 |m〉
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Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform
Show that |+〉⊗n = 1

2n/2

∑2n−1
m=0 |m〉

I Base case n = 1: |+〉⊗1 = |+〉 = 1√
2
|0〉+ 1√

2
|1〉 = 1

21/2

∑21−1
m=0 |m〉

I Inductive step assumes statement is true for n = k− 1, Then for n = k:
|+〉⊗k = |+〉 ⊗ |+〉k−1 = 1√

2

(
|0〉+ |1〉

)
⊗ 1

2(k−1)/2

∑2k−1−1
m=0 |m〉 =

1
21/2

[
1
1

]
⊗ 1

2(k−1)/2


1
1
...
1


2k−1×1

= 1
2k/2


1
1
...
1


2k×1
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Deutsch-Jozsa algorithm: simplest quantum algorithm showing
advantage vs. classical

A Heist
I You break into a bank vault. The bank vault has 2n bars. Three possibilities:

all are gold, half are gold and half are fake, or all are fake.
I Even if you steal just one gold bar, it is enough to fund your escape from the

country, forever evading law enforcement.
I You do not want to risk stealing from a bank vault with only fake bars.
I You have access to an oracle f (x) that tells you if gold bar x is real.
I Using the oracle sounds the alarm, so you only get to use it once.
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Deutsch-Jozsa algorithm: simplest quantum algorithm showing
advantage vs. classical

More formal description

I The 2n bars are either fake or gold. f : {0, 1}n → {0, 1}.
I Three possibilities:

1. All are fake. f is constant. f (x) = 0 for all x ∈ {0, 1}n.
2. All are gold. f is constant. f (x) = 1 for all x ∈ {0, 1}n.
3. Half fake half gold. f is balanced.∣∣∣∣{x ∈ {0, 1}n : f (x) = 0}

∣∣∣∣ =

∣∣∣∣{x ∈ {0, 1}n : f (x) = 1}
∣∣∣∣ = 2n−1

I The oracle U works as follows: U |c〉 |t〉 = |c〉 |t⊕ f (c)〉
I Try deciding if f is constant or balanced using oracle U only once.
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Circuit diagram

Compare to diagram in Rudolph, "Q is for Quantum".
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What is in the oracle

For n = 1, four possibilities
f0 f1 f2 f3

f(0) 0 0 1 1
f(1) 0 1 0 1

f is constant 0 f is balanced f is balanced f is constant 1



15/19

Demonstration of Deutsch-Jozsa for the n = 1 case

Output of circuit is c = 0 iff f is constant

1. Initial state: |c〉 ⊗ |t〉 = |0〉 ⊗ |1〉 = |0〉 |1〉 = |01〉

2. After first set of Hadamards: H ⊗H
(
|0〉 ⊗ |1〉

)
= H |0〉 ⊗H |1〉 = |+〉 ⊗ |−〉 =

(
1√
2
|0〉+ 1√

2
|1〉
)
⊗
(

1√
2
|0〉 − 1√

2
|1〉
)

= 1
2


1
−1
1
−1


From here, let’s take an aside via matrix-vector multiplication to build intuition
with interference and phase kickback.
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Demonstration of Deutsch-Jozsa for the n = 1 case

Output of circuit is c = 0 iff f is constant

1. Initial state: |c〉 ⊗ |t〉 = |0〉 ⊗ |1〉 = |0〉 |1〉 = |01〉

2. After first set of Hadamards: H ⊗H
(
|0〉 ⊗ |1〉

)
= |+〉 |−〉 =(

1√
2
|0〉+ 1√

2
|1〉
)(

1√
2
|0〉 − 1√

2
|1〉
)

= 1
2

(
|0〉
(
|0〉 − |1〉

)
+ |1〉

(
|0〉 − |1〉

))
3. After applying oracle U:

U 1
2

(
|0〉
(
|0〉 − |1〉

)
+ |1〉

(
|0〉 − |1〉

))
= 1

2

(
|0〉
(
|f (0)⊕ 0〉 − |f (0)⊕ 1〉

)
+

|1〉
(
|f (1)⊕ 0〉 − |f (1)⊕ 1〉

))
= 1

2

(
|0〉
(
|f (0)〉 − | ¯f (0)〉

)
+ |1〉

(
|f (1)〉 − | ¯f (1)〉

))
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Demonstration of Deutsch-Jozsa for the n = 1 case
Output of circuit is c = 0 iff f is constant

1. Initial state: |c〉 ⊗ |t〉 = |0〉 ⊗ |1〉 = |0〉 |1〉 = |01〉

2. After first set of Hadamards: 1
2

(
|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉)

)
3. After applying oracle U: U 1

2

(
|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉)

)
=

1
2

(
|0〉
(
|f (0)〉 − | ¯f (0)〉

)
+ |1〉

(
|f (1)〉 − | ¯f (1)〉

))
4. This last expression can be factored depending on f :

U 1
2

(
|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉)

)
={

1
2

(
|0〉+ |1〉

)(
|f (0)〉 − | ¯f (0)〉

)
if f (0) = f (1)

1
2

(
|0〉 − |1〉

)(
|f (0)〉 − | ¯f (0)〉

)
if f (0) 6= f (1)

=

{
|+〉 |−〉 if f (0) = f (1)

|−〉 |−〉 if f (0) 6= f (1)

The trick where oracle’s output on |t〉 affects phase of |c〉 is called phase kickback.
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Demonstration of Deutsch-Jozsa for the n = 1 case

Output of circuit is c = 0 iff f is constant

1. Initial state: |c〉 ⊗ |t〉 = |0〉 ⊗ |1〉 = |0〉 |1〉 = |01〉

2. After first set of Hadamards: 1
2

(
|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉)

)
3. After applying oracle U:

U 1
2

(
|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉)

)
=

{
|+〉 |−〉 if f (0) = f (1)

|−〉 |−〉 if f (0) 6= f (1)

4. After applying second H on top qubit:{
H ⊗ I

(
|+〉 |−〉

)
= |0〉 |−〉 if f (0) = f (1)

H ⊗ I
(
|−〉 |−〉

)
= |1〉 |−〉 if f (0) 6= f (1)
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Deutsch-Jozsa programs and systems

Algorithm
David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. 1992.

Programs
Google Cirq programming example.

Implementation

I Mach-Zehnder interferometer implementation.
https://www.st-andrews.ac.uk/physics/quvis/simulations_
html5/sims/SinglePhotonLab/SinglePhotonLab.html

I Ion trap implementation. Gulde et al. Implementation of the Deutsch–Jozsa
algorithm on an ion-trap quantum computer. Letters to Nature. 2003.

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
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