Quantum computing fundamentals: Deutsch-Jozsa programs and systems

Yipeng Huang

Rutgers University
September 15, 2021

Table of contents

Announcements

Review

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Announcements

The class so far

1. Be sure to keep up with class via session slides and recommended reading.
2. Practice quantum computing formalism: state vectors, unitary matrices, tensor products.

Intermediate-term class plan

Where we are headed in first month

1. Fundamental rules of quantum computing
2. Basic quantum algorithms
3. Programming examples in Google Cirq
4. A NISQ algorithm: quantum approximate optimization algorithm
5. Programming assignment on QAOA in Cirq

Table of contents

Announcements

Review

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Superposition

Special names for two common superposition states (with respect to standard basis)

- $|+\rangle=H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$
- $|-\rangle=H|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$

Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform
Show that $|+\rangle^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}|m\rangle$

Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform Show that $|+\rangle^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}|m\rangle$

- Base case $n=1:|+\rangle^{\otimes 1}=|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle=\frac{1}{2^{1 / 2}} \sum_{m=0}^{2^{1}-1}|m\rangle$

Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform Show that $|+\rangle^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}|m\rangle$

- Base case $n=1:|+\rangle^{\otimes 1}=|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle=\frac{1}{2^{1 / 2}} \sum_{m=0}^{2^{1}-1}|m\rangle$
- Inductive step assumes statement is true for $n=k-1$, Then for $n=k$:

Table of contents

Announcements

Review

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Deutsch－Jozsa algorithm：simplest quantum algorithm showing advantage vs．classical

A Heist

－You break into a bank vault．The bank vault has 2^{n} bars．Three possibilities： all are gold，half are gold and half are fake，or all are fake．
－Even if you steal just one gold bar，it is enough to fund your escape from the country，forever evading law enforcement．
－You do not want to risk stealing from a bank vault with only fake bars．
－You have access to an oracle $f(x)$ that tells you if gold bar x is real．
－Using the oracle sounds the alarm，so you only get to use it once．

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

More formal description

- The 2^{n} bars are either fake or gold. $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Three possibilities:

1. All are fake. f is constant. $f(x)=0$ for all $x \in\{0,1\}^{n}$.
2. All are gold. f is constant. $f(x)=1$ for all $x \in\{0,1\}^{n}$.
3. Half fake half gold. f is balanced.

$$
\left|\left\{x \in\{0,1\}^{n}: f(x)=0\right\}\right|=\left|\left\{x \in\{0,1\}^{n}: f(x)=1\right\}\right|=2^{n-1}
$$

- The oracle U works as follows: $U|c\rangle|t\rangle=|c\rangle|t \oplus f(c)\rangle$
- Try deciding if f is constant or balanced using oracle U only once.

Circuit diagram

Compare to diagram in Rudolph, " Q is for Quantum".

What is in the oracle

For $n=1$ ，four possibilities

$f_{0}$$|$| | | | |
| :--- | :--- | :--- | :--- |
| $\mathrm{f}(0)$ | 0 | 0 | f_{2} |
| $\mathrm{f}(1)$ | 0 | 1 | 1 |
| | f is constant 0 | f is balanced | f is balanced |
| | f is constant 1 | | |

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $H \otimes H(|0\rangle \otimes|1\rangle)=H|0\rangle \otimes H|1\rangle=|+\rangle \otimes|-\rangle=$

$$
\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

From here, let's take an aside via matrix-vector multiplication to build intuition with interference and phase kickback.

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $H \otimes H(|0\rangle \otimes|1\rangle)=|+\rangle|-\rangle=$ $\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U :

$$
\begin{aligned}
& U_{\frac{1}{2}}^{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=\frac{1}{2}(|0\rangle(|f(0) \oplus 0\rangle-|f(0) \oplus 1\rangle)+ \\
& \left.\left.|1\rangle(|f(1) \oplus 0\rangle-|f(1) \oplus 1\rangle))=\frac{1}{2}(|0\rangle(|f(0)\rangle-|f(0)\rangle)+|1\rangle(|f(1)\rangle-\mid f \overline{1})\rangle\right)\right)
\end{aligned}
$$

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle $U: U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=$

$$
\frac{1}{2}(|0\rangle(|f(0)\rangle-|f(\overline{0})\rangle)+|1\rangle(|f(1)\rangle-|f \overline{(1)}\rangle))
$$

4. This last expression can be factored depending on f :

$$
\begin{aligned}
& U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))= \\
& \left\{\begin{array}{l}
\frac{1}{2}(|0\rangle+|1\rangle)(|f(0)\rangle-|f(0)\rangle) \text { if } f(0)=f(1) \\
\frac{1}{2}(|0\rangle-|1\rangle)(|f(0)\rangle-|f \overline{(0)}\rangle) \text { if } f(0) \neq f(1)
\end{array}=\left\{\begin{array}{l}
|+\rangle|-\rangle \text { if } f(0)=f(1) \\
|-\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.\right.
\end{aligned}
$$

The trick where oracle's output on $|t\rangle$ affects phase of $|c\rangle$ is called phase kickback.

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U :

$$
U_{2}^{\frac{1}{2}}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=\left\{\begin{array}{l}
|+\rangle|-\rangle \text { if } f(0)=f(1) \\
|-\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.
$$

4. After applying second H on top qubit:

$$
\left\{\begin{array}{l}
H \otimes I(|+\rangle|-\rangle)=|0\rangle|-\rangle \text { if } f(0)=f(1) \\
H \otimes I(|-\rangle|-\rangle)=|1\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.
$$

Deutsch-Jozsa programs and systems

Algorithm

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. 1992.

Programs
Google Cirq programming example.
Implementation

- Mach-Zehnder interferometer implementation.
https://www.st-andrews.ac.uk/physics/quvis/simulations_ html5/sims/SinglePhotonLab/SinglePhotonLab.html
- Ion trap implementation. Gulde et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Letters to Nature. 2003.

