Quantum computing fundamentals: Deutsch-Jozsa programs and systems

Yipeng Huang

Rutgers University

September 20, 2021
Table of contents

Announcements

Review
 Deutsch-Jozsa programs and systems
 Circuit diagram and what is in the oracle
 Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Deutsch-Jozsa algorithm: pushing Deutsch’s algorithm $n > 1$
 The Deutsch-Jozsa algorithm circuit
 The state after the first set of Hadamards
 The state after applying oracle U
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0
Announcements

New reading assignment, choose one

1. “Quantum computing 40 years later” by John Preskill
2. “The Limits of Quantum Computers” by Scott Aaronson
3. “Recent progress in quantum algorithms” by Bacon and van Dam

Whichever article you read, respond to: "Quantum Computing: overrated / underrated?" One paragraph on each viewpoint.
Intermediate-term class plan

Where we are headed in first month

1. Fundamental rules of quantum computing
2. Basic quantum algorithms
3. Programming examples in Google Cirq
4. A NISQ algorithm: quantum approximate optimization algorithm
5. Programming assignment on QAOA in Cirq
Table of contents

Announcements

Review

Deutsch-Jozsa programs and systems
Circuit diagram and what is in the oracle
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Deutsch-Jozsa algorithm: pushing Deutsch’s algorithm $n > 1$
The Deutch-Jozsa algorithm circuit
The state after the first set of Hadamards
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0
Deutsch-Jozsa programs and systems

Algorithm

Programs
Google Cirq programming example.

Implementation
- Mach-Zehnder interferometer implementation.
Mach-Zehnder interferometer implementation of Deutsch’s algorithm

\[|0\rangle \xrightarrow{H} |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \]

\[\xrightarrow{Z} |-\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \]

\[\xrightarrow{-Z} -|-\rangle = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \]

\[\xrightarrow{-ZZ=-I} -|+\rangle = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} \]

\[\xrightarrow{H} |0\rangle \]

\[\xrightarrow{H} |1\rangle \]

\[\xrightarrow{H} -|1\rangle \]

\[\xrightarrow{H} -|0\rangle \]
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

More formal description

- The 2^n bars are either fake or gold. $f : \{0, 1\}^n \to \{0, 1\}$.
- Three possibilities:
 1. All are fake. f is constant. $f(x) = 0$ for all $x \in \{0, 1\}^n$.
 2. All are gold. f is constant. $f(x) = 1$ for all $x \in \{0, 1\}^n$.
 3. Half fake half gold. f is balanced.

\[
\left| \{x \in \{0, 1\}^n : f(x) = 0\} \right| = \left| \{x \in \{0, 1\}^n : f(x) = 1\} \right| = 2^{n-1}
\]
- The oracle U works as follows: $U |c\rangle |t\rangle = |c\rangle |t \oplus f(c)\rangle$
- Try deciding if f is constant or balanced using oracle U only once.
Circuit diagram

Compare to diagram in Rudolph, "Q is for Quantum".
What is in the oracle

For \(n = 1 \), four possibilities

<table>
<thead>
<tr>
<th></th>
<th>(f_0)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(0))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f(1))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(f) is constant 0</td>
<td>(f) is balanced</td>
<td>(f) is balanced</td>
<td>(f) is constant 1</td>
<td></td>
</tr>
</tbody>
</table>
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Output of circuit is $c = 0$ iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. After first set of Hadamards: $H \otimes H\left(|0\rangle \otimes |1\rangle\right) = H |0\rangle \otimes H |1\rangle = |+\rangle \otimes |−\rangle = \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle\right) \otimes \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle\right) = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$

From here, let’s take an aside via matrix-vector multiplication to build intuition with interference and phase kickback.
Deutsch’s algorithm: Deutsch-Jozsa for the \(n = 1 \) case

Output of circuit is \(c = 0 \) iff \(f \) is constant

1. Initial state: \(|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle \)

2. After first set of Hadamards: \(\frac{1}{2} \left(|0\rangle \left(|0\rangle - |1\rangle \right) + |1\rangle \left(|0\rangle - |1\rangle \right) \right) \)

3. After applying oracle \(U: U \frac{1}{2} \left(|0\rangle \left(|0\rangle - |1\rangle \right) + |1\rangle \left(|0\rangle - |1\rangle \right) \right) = \frac{1}{2} \left(|0\rangle \left(|f(0)\rangle - |f(\bar{0})\rangle \right) + |1\rangle \left(|f(1)\rangle - |f(\bar{1})\rangle \right) \right) \)

4. This last expression can be factored depending on \(f \):
\[
\frac{1}{2} \left(|0\rangle \left(|f(0)\rangle - |f(\bar{0})\rangle \right) + |1\rangle \left(|f(1)\rangle - |f(\bar{1})\rangle \right) \right) =
\begin{cases}
\frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(|f(0)\rangle - |f(\bar{0})\rangle \right) & \text{if } f(0) = f(1) \\
\frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(|f(0)\rangle - |f(\bar{0})\rangle \right) & \text{if } f(0) \neq f(1)
\end{cases}
\]

The trick where oracle’s output on \(|t\rangle \) affects phase of \(|c\rangle \) is called phase kickback.
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Output of circuit is $c = 0$ iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. After first set of Hadamards: $\frac{1}{2} \left(|0\rangle \left(|0\rangle - |1\rangle \right) + |1\rangle \left(|0\rangle - |1\rangle \right) \right)$

3. After applying oracle U:

$$U^{\frac{1}{2}} \left(|0\rangle \left(|0\rangle - |1\rangle \right) + |1\rangle \left(|0\rangle - |1\rangle \right) \right) = \begin{cases} |+\rangle |-\rangle & \text{if } f(0) = f(1) \\ |-\rangle |-\rangle & \text{if } f(0) \neq f(1) \end{cases}$$

4. After applying second H on top qubit:

$$\begin{cases} H \otimes I \left(|+\rangle |-\rangle \right) = |0\rangle |-\rangle & \text{if } f(0) = f(1) \\ H \otimes I \left(|-\rangle |-\rangle \right) = |1\rangle |-\rangle & \text{if } f(0) \neq f(1) \end{cases}$$
Table of contents

Announcements

Review
 Deutsch-Jozsa programs and systems
 Circuit diagram and what is in the oracle
 Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Deutsch-Jozsa algorithm: pushing Deutsch’s algorithm $n > 1$
 The Deutch-Jozsa algorithm circuit
 The state after the first set of Hadamards
 The state after applying oracle U
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0
Deutsch-Jozsa algorithm: pushing Deutsch’s algorithm $n > 1$

The Deutsch-Jozsa algorithm circuit

Compare to diagram in Rudolph, "Q is for Quantum".
Recall Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform
Show that $|+\rangle \otimes^n = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle$

- Base case $n = 1$: $|+\rangle \otimes^1 = |+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle = \frac{1}{2^{1/2}} \sum_{c=0}^{1-1} |c\rangle$

- Inductive step assumes statement is true for $n = k - 1$. Then for $n = k$:

$|+\rangle \otimes^k = |+\rangle \otimes |+\rangle^{k-1} = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{2^{(k-1)/2}} \sum_{c=0}^{2^{k-1}-1} |c\rangle = $

$$\frac{1}{2^{1/2}} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \otimes \frac{1}{2^{(k-1)/2}} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}^{2^{k-1} \times 1} = \frac{1}{2^{k/2}} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}^{2^k \times 1}$$
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

The state after the first set of Hadamards

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\ldots0\rangle |1\rangle = |0\ldots01\rangle$

2. After first set of Hadamards: $|+\rangle \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

The state after applying oracle U

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^\otimes n \otimes |1\rangle = |0\ldots0\rangle |1\rangle = |0\ldots01\rangle$

2. After first set of Hadamards: $|+\rangle^\otimes n \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U:

$$
U\left(|+\rangle^\otimes n \otimes |-\rangle\right) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes \left(\frac{|f(c)\rangle - |\bar{f}(c)\rangle}{\sqrt{2}} \right)
$$

$$
= \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)
$$
Lemma: the Hadamard transform

\[H^\otimes n |c\rangle = \frac{1}{2^{n/2}} \sum_{m=0}^{2^n-1} (-1)^{c \cdot m} |m\rangle \]

\[H^\otimes n |c\rangle \\
= H |c_0\rangle \otimes H |c_1\rangle \otimes \ldots \otimes H |c_{n-1}\rangle \\
= \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{c_0} |1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{c_1} |1\rangle \right) \otimes \ldots \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{c_{n-1}} |1\rangle \right) \\
= \frac{1}{2^{n/2}} \sum_{m=0}^{2^n-1} (-1)^{c_0 m_0 + c_1 m_1 + \ldots + c_{n-1} m_{n-1} \mod 2} |m\rangle \\
\]

\[\text{Try it out for } n = 1: \ H^\otimes 1 |c\rangle = \frac{1}{2^{1/2}} \sum_{m=0}^{2^1-1} (-1)^{c \cdot m} |m\rangle = \\
\frac{1}{\sqrt{2}}(-1)^0 |0\rangle + \frac{1}{\sqrt{2}}(-1)^c |1\rangle = \begin{cases} \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle = |+\rangle & \text{if } |c\rangle = |0\rangle \\
\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle = |-\rangle & \text{if } |c\rangle = |1\rangle \end{cases} \]
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

The state after applying oracle U

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^\otimes n \otimes |1\rangle = |0\ldots 0\rangle |1\rangle = |0\ldots 01\rangle$
2. After first set of Hadamards: $|+\rangle^\otimes n \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$
3. After applying oracle U: $U\left(|+\rangle^\otimes n \otimes |-\rangle\right) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$
4. After final set of Hadamards:

\[(H^\otimes n \otimes I)\left(\frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)\right) \]

\[= \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} \left(\frac{1}{2^{n/2}} \sum_{m=0}^{2^n-1} (-1)^{c \cdot m} |m\rangle\right) \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \]

\[= \frac{1}{2^n} \sum_{c=0}^{2^n-1} \sum_{m=0}^{2^n-1} (-1)^{f(c)+c \cdot m} |m\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \]
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Output of circuit is 0 iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^{\otimes n} \otimes |1\rangle = |0\ldots 0\rangle |1\rangle = |0\ldots 01\rangle$

2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U: $U \left(|+\rangle^{\otimes n} \otimes |-\rangle \right) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)$

4. After final set of Hadamards: $(H^{\otimes n} \otimes I) \left(\frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \right) = \frac{1}{2^n} \sum_{c=0}^{2^n-1} \sum_{m=0}^{2^n-1} (-1)^{f(c)} + c \cdot m |m\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)$

5. Amplitude of upper register being $|m\rangle = |0\rangle$:

$$\frac{1}{2^n} \sum_{c=0}^{2^n-1} (-1)^{f(c)}$$
Deutsch’s algorithm: Deutsch-Jozsa for the $n = 1$ case

Output of circuit is 0 iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\ldots 0\rangle |1\rangle = |0\ldots 01\rangle$

2. After first set of Hadamards: $|+\rangle \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U: $U(|+\rangle \otimes |-\rangle) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)$

4. After final set of Hadamards: $(H^\otimes n \otimes I)\left(\frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \right) = \frac{1}{2^n} \sum_{c=0}^{2^n-1} \sum_{m=0}^{2^n-1} (-1)^{f(c)+c \cdot m} |m\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)$

5. Amplitude of upper register being $|m\rangle = |0\rangle$: $\frac{1}{2^n} \sum_{c=0}^{2^n-1} (-1)^{f(c)}$

6. Probability of measuring upper register to get $m = 0$:

$$\left| \frac{1}{2^n} \sum_{c=0}^{2^n-1} (-1)^{f(c)} \right|^2 = \begin{cases} |(-1)^{f(c)}|^2 = 1 & \text{if } f \text{ is constant} \\ 0 & \text{if } f \text{ is balanced} \end{cases}$$