Quantum computing fundamentals: Hardy's paradox / CHSH / Bell's inequality

Yipeng Huang

Rutgers University

October 4, 2021

Table of contents

Announcements

Dense coding with high-dimensional qudit entanglement

The lens we take when studying quantum computing

Bell inequality testing protocol / game

Intermediate-term class plan

Where we are headed in first month

1. Fundamentals: superposition / Deutsch-Jozsa
2. Fundamentals: entanglement / Bell inequalities
3. Programming examples in Google Cirq
4. Shor's algorithm (new)
5. A NISQ algorithm: quantum approximate optimization algorithm
6. Programming assignment on QAOA in Cirq

Longer-term class plan

The remaining two months

1. Systems view of quantum computing
2. Programming abstractions: stabilizers, tensor networks
3. VQE: quantum chemistry
4. Quantum error correction codes (new)
5. Quantum architecture and micro-architecture
6. Prototype devices: superconductors and ion traps

What is being cut

1. 2020 quantum advantage debates
2. Student presentations: $2 \rightarrow 1$

Table of contents

Announcements

Dense coding with high-dimensional qudit entanglement

The lens we take when studying quantum computing

Bell inequality testing protocol / game

Dense coding with high-dimensional qudit entanglement

Laser optics physical experiment

Hu et al.. Beating the channel capacity limit for superdense coding with entangled ququarts. Science Advances. 2018.
https://www.science.org/doi/10.1126/sciadv.aat9304
Challenge programming assignment: qutrit dense coding in Cirq
If you take on building this prototype, can substitute either programming assignment on QAOA or VQE.

Timely research project: world-first demo of qutrit dense coding on IBM Q Likely key challenge: qubits currently engineered for CNOTs.

Dense coding with high-dimensional qudit entanglement

Qudits

	1 qudit basis vectors	2 qudit basis vectors	3 qudit basis vectors
Qubit	$\|0\rangle,\|1\rangle$	$\|00\rangle,\|01\rangle,\|10\rangle,\|11\rangle$	$\|000\rangle,\|001\rangle,\|010\rangle, \ldots,\|111\rangle$
Qutrit	$\|0\rangle,\|1\rangle,\|2\rangle$	$\|00\rangle,\|01\rangle,\|02\rangle,\|10\rangle, \ldots,\|22\rangle$	$\|000\rangle, \ldots,\|002\rangle,\|010\rangle, \ldots,\|222\rangle$
Ququart	$\|0\rangle,\|1\rangle,\|2\rangle,\|3\rangle$	$\|00\rangle, \ldots,\|03\rangle,\|10\rangle, \ldots,\|33\rangle$	$\|000\rangle, \ldots,\|003\rangle,\|010\rangle, \ldots,\|333\rangle$

So for example, 2 qutrits with an orthogonal state space size of $3^{2}=9$ can encode the state space of 3 qubits (which has state space size of $2^{3}=8$).

DFT matrix: generalized Hadamard for D-dimensional qudits

$$
W=\frac{1}{\sqrt{D}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{D-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(D-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{D-1} & \omega^{2(D-1)} & \cdots & \omega^{(D-1)(D-1)}
\end{array}\right]
$$

Where

$$
\omega=e^{\frac{2}{D} \pi i}
$$

And recall that

$$
e^{i x}=\cos x+i \sin x
$$

Teo Banica. Complex Hadamard matrices and applications. 2021. hal-02317067v2 https://arxiv.org/abs/1910.06911

DFT matrix: generalized Hadamard for D-dimensional qudits

$D=3$, Hadamard matrix for qutrits
$D=2$, Hadamard matrix for qubits

$$
\begin{aligned}
H & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & \omega^{1}
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & e^{\frac{2}{2} \pi i}
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
W & =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{1} & \omega^{2} \\
1 & \omega^{2} & \omega^{4}
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{\frac{2}{3} \pi i} & e^{\frac{4}{3} \pi i} \\
1 & e^{\frac{4}{3} \pi i} & e^{\frac{8}{3} \pi i}
\end{array}\right] \\
& =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{\frac{2}{3} \pi i} & e^{\frac{-2}{3} \pi i} \\
1 & e^{\frac{-2}{3} \pi i} & e^{\frac{2}{3}} \pi i
\end{array}\right] \\
& =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -\frac{1}{2}+\frac{\sqrt{3}}{2} i & -\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
1 & -\frac{1}{2}-\frac{\sqrt{3}}{2} i & -\frac{1}{2}+\frac{\sqrt{3}}{2} i
\end{array}\right]
\end{aligned}
$$

Yurtalan et al.. Implementation of a Walsh-Hadamard Gate in a
Superconducting Qutrit. PRL. 2020.

Generalized CNOT gate

$D=3$, CPLUS for qutrits
$|x, y\rangle \xrightarrow{\text { CPLUS }}|x, x+y \bmod 3\rangle$

1. $|0,0\rangle \xrightarrow{\text { CPLUS }}|0,0\rangle$
2. $|0,1\rangle \xrightarrow{\text { CPLUS }}|0,1\rangle$
3. $|0,2\rangle \xrightarrow{\text { CPLUS }}|0,2\rangle$
4. $|1,0\rangle \xrightarrow{\text { CPLUS }}|1,1\rangle$
5. $|1,1\rangle \xrightarrow{\text { CPLUS }}|1,2\rangle$
6. $|1,2\rangle \xrightarrow{\text { CPLUS }}|1,0\rangle$
7. $|2,0\rangle \xrightarrow{\text { CPLUS }}|2,2\rangle$
8. $|2,1\rangle \xrightarrow{\text { CPLUS }}|2,0\rangle$
9. $|2,2\rangle \xrightarrow{\text { CPLUS }}|2,1\rangle$

Çorbaci et al.. Construction of two qutrit entanglement by using magnetic resonance selective pulse sequences. Journal of Physics: Conference Series. 2016.
https://iopscience. iop.org/article/10. 1088/1742-6596/766/ 1/012014

Dense coding with high-dimensional qudit entanglement

2 qutrit maximally entangled orthogonal basis set

1. $|00\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}(|00\rangle+|10\rangle+|20\rangle) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle)$
2. $|01\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}(|01\rangle+|11\rangle+|21\rangle) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}(|01\rangle+|12\rangle+|20\rangle)$
3. $|02\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}(|02\rangle+|12\rangle+|22\rangle) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}(|02\rangle+|10\rangle+|21\rangle)$
4. $|10\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}\left(|00\rangle+\omega|10\rangle+\omega^{2}|20\rangle\right) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}\left(|00\rangle+\omega|11\rangle+\omega^{2}|22\rangle\right)$
5. $|11\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}\left(|01\rangle+\omega|11\rangle+\omega^{2}|21\rangle\right) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}\left(|01\rangle+\omega|12\rangle+\omega^{2}|20\rangle\right)$
6. $|12\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}\left(|02\rangle+\omega|12\rangle+\omega^{2}|22\rangle\right) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}\left(|02\rangle+\omega|10\rangle+\omega^{2}|21\rangle\right)$
7. $|20\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}\left(|00\rangle+\omega^{2}|10\rangle+\omega|20\rangle\right) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}\left(|00\rangle+\omega^{2}|11\rangle+\omega|22\rangle\right)$
8. $|21\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}\left(|01\rangle+\omega^{2}|11\rangle+\omega|21\rangle\right) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}\left(|01\rangle+\omega^{2}|12\rangle+\omega|20\rangle\right)$
9. $|22\rangle \xrightarrow{W \otimes I} \frac{1}{\sqrt{3}}\left(|02\rangle+\omega^{2}|12\rangle+\omega|22\rangle\right) \xrightarrow{\text { CPLUS }} \frac{1}{\sqrt{3}}\left(|02\rangle+\omega^{2}|10\rangle+\omega|21\rangle\right)$

Exercise: show that this is an orthogonal set of vectors.
Focus on lines 4 and 7 . Recall complex vector dot product.

Transmit 2 trits of classical information by sending 1 qutrit

Alice applies different operators on her qutrits so Bob measures the message

$$
\text { 1. } \frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle) \xrightarrow{I \otimes I} \frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle) \xrightarrow{\text { CMINUS }_{0,1}} \frac{1}{\sqrt{3}}(|00\rangle+|10\rangle+|20\rangle) \xrightarrow{W^{-1} \otimes I}|00\rangle
$$

2. ...

See the set of 9 Weyl operators in https://iopscience.iop.org/article/ 10.1088/1742-6596/766/1/012014/pdf

Breaking the binary abstraction

Is ternary (and beyond) logic useful in classical computing?

- Historically was useful in analog computing.
- Drive to decrease supply voltage while increasing noise resilience made processing in binary the dominant paradigm.
- Current still has uses in storage, at least.

Is ternary (and beyond) logic useful in quantum computing?

- PRO: higher quantum channel capacity.
- CON: qubits are much easier to engineer than qutrits.

Dense coding programs and systems

In this class, we study quantum algorithms down to hardware

- https://quantumai.google/cirq/qudits
- https://qiskit.org/textbook/ch-quantum-hardware/ accessing_higher_energy_states.html
- Cervera-Lierta. Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement with superconducting transmon qutrits. arXiv. 2021. https://arxiv.org/abs/2104.05627

Challenge programming assignment: qutrit dense coding in Cirq
Can substitute either programming assignment on QAOA or VQE.
Timely research project: world-first demo of qutrit dense coding on IBM Q Likely key challenge: qubits currently engineered for CNOTs.

Table of contents

Announcements

Dense coding with high-dimensional qudit entanglement

The lens we take when studying quantum computing

Bell inequality testing protocol / game

The lens we take when studying quantum computing

- When quantum physics was first discovered, the mathematics of entanglement led to shocking conclusions.
- If you can keep systems coherent (isolated), they can exhibit superposition and entanglement.
- Einstein and others: there shouldn't be "spooky action at a distance" so there must be some local hidden-variable. The task was then to prove or disprove local hidden-variables.
- But protocols and experiments like Hardy's, GHZ, CHSH, and Aspect experimentally rejected local hidden-variable theory.

Table of contents

Announcements

Dense coding with high-dimensional qudit entanglement

The lens we take when studying quantum computing

Bell inequality testing protocol / game

Test of entanglement

Two isolated parties Alice and Bob

- Alice gets coin toss x, replies a
- Bob gets coin toss y, replies b

Goal: maximize $a \oplus b=x \wedge y$

x	y	$x \wedge y$	$a \oplus b$	winning options for (a, b)
0	0	0	0	$(0,0)$ or $(1,1)$
0	1	0	0	$(0,0)$ or $(1,1)$
1	0	0	0	$(0,0)$ or $(1,1)$
1	1	1	1	$(0,1)$ or $(1,0)$

Best classical strategy to maximize $a \oplus b=x \wedge y$

Proof that any assignment to a and b cannot always satisfy $a \oplus b=x \wedge y$

1. Let a_{0} be Alice's response if she sees $x=0$
2. Let a_{1} be Alice's response if she sees $x=1$
3. Let b_{0} be Bob's response if she sees $y=0$
4. Let b_{1} be Bob's response if she sees $y=1$

Satisfy $a \oplus b=x \wedge y$

1. $a_{0} \oplus b_{0}=0$
2. $a_{0} \oplus b_{1}=0$
3. $a_{1} \oplus b_{0}=0$
4. $a_{1} \oplus b_{1}=1$

Sum $(\bmod 2)$ of left side

$$
\begin{aligned}
& \left(a_{0} \oplus b_{0}\right) \oplus\left(a_{0} \oplus b_{1}\right) \oplus\left(a_{1} \oplus b_{0}\right) \oplus\left(a_{1} \oplus b_{1}\right)= \\
& \left(a_{0} \oplus a_{0}\right) \oplus\left(a_{1} \oplus a_{1}\right) \oplus\left(b_{0} \oplus b_{0}\right) \oplus\left(b_{1} \oplus b_{1}\right)=0
\end{aligned}
$$

Sum $(\bmod 2)$ of right side

 1
Best classical strategy to maximize $a \oplus b=x \wedge y$

Even if the two shared randomness, the random coin toss of x and y prevents use of shared randomness.
Best you can do is $3 / 4$. Give a couple ways of getting $3 / 4$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(0,0)$ So Alice and Bob both apply I:

$$
(I \otimes I)|\Phi\rangle=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a win, with probability } \frac{9}{12} \\
(a, b)=(0,1), \text { a loss, with probability } \frac{1}{12} \\
(a, b)=(1,0), \text { a loss, with probability } \frac{1}{12} \\
(a, b)=(1,1), \text { a win, with probability } \frac{1}{12}
\end{array}\right.
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(0,1)$ So Alice applies I, Bob applies H :

$$
(I \otimes H)|\Phi\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\frac{1}{2 \sqrt{6}}\left[\begin{array}{l}
4 \\
2 \\
0 \\
2
\end{array}\right]
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a win, with probability } \frac{4}{6} \\
(a, b)=(0,1), \text { a loss, with probability } \frac{1}{6} \\
(a, b)=(1,0), \text { a loss, with probability } 0 \\
(a, b)=(1,1), \text { a win, with probability } \frac{1}{6}
\end{array}\right.
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(1,0)$ So Alice applies H, Bob applies I:

$$
(H \otimes I)|\Phi\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\frac{1}{2 \sqrt{6}}\left[\begin{array}{l}
4 \\
0 \\
2 \\
2
\end{array}\right]
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a win, with probability } \frac{4}{6} \\
(a, b)=(0,1), \text { a loss, with probability } 0 \\
(a, b)=(1,0), \text { a loss, with probability } \frac{1}{6} \\
(a, b)=(1,1), \text { a win, with probability } \frac{1}{6}
\end{array}\right.
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(1,1)$ So Alice and Bob both apply H :

$$
(H \otimes H)|\Phi\rangle=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\frac{1}{4 \sqrt{3}}\left[\begin{array}{l}
4 \\
4 \\
4 \\
0
\end{array}\right]
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a loss, with probability } \frac{1}{3} \\
(a, b)=(0,1), \text { a win, with probability } \frac{1}{3} \\
(a, b)=(1,0), \text { a win, with probability } \frac{1}{3} \\
(a, b)=(1,1), \text { a loss, with probability } 0
\end{array}\right.
$$

The lens we take when studying quantum computing

Cannot have both locality and realism

- Locality: "means that information and causation act locally, not faster than light"
- Realism: "means that physical systems have definite, well-defined properties (even if those properties may be unknown to us)"
Source: de Wolf. Quantum Computing: Lecture Notes
Unpalatable choices
- Keep locality and sacrifice realism: no definite narrative of the world
- Keep realism and sacrifice locality: spooky-action-at-a-distance

