
1/15

Shor’s factoring algorithm: the classical part

Yipeng Huang

Rutgers University

October 6, 2021



2/15

Table of contents

Announcements

The factoring problem

The classical part: converting factoring to order finding / period finding



2/15

Intermediate-term class plan

Where we are headed in first month
1. Fundamentals: superposition / Deutsch-Jozsa
2. Fundamentals: entanglement / Bell inequalities
3. Programming examples in Google Cirq
4. Shor’s algorithm (new)
5. A NISQ algorithm: quantum approximate optimization algorithm
6. Programming assignment on QAOA in Cirq



3/15

Table of contents

Announcements

The factoring problem

The classical part: converting factoring to order finding / period finding



3/15

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3√b

time.

I Makes multiplying large primes a candidate one-way function.
I It’s an open question of mathematics to prove whether one way functions

exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50

https://www.youtube.com/watch?v=M7kEpw1tn50


4/15

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3√b

time.

Quantum integer factoring algorithm

I Quantum algorithm to factor a b-bit number: b3.
I Peter Shor, 1994.
I Important example of quantum algorithm offering exponential speedup.



5/15

Table of contents

Announcements

The factoring problem

The classical part: converting factoring to order finding / period finding



5/15

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.



6/15

Factoring

N = pq

N = 15 = 3 × 5



7/15

Modular square root

Finding the modular square root

s2 mod N = 1

Trivial roots would be s = ±1.
Are there other roots, and how would it be useful for factoring?



8/15

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.



9/15

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.
So now our modular square root problem is:

ar mod N = 1

ar ≡ 1 mod N

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.



10/15

Order finding

Our discrete log problem is equivalent to order finding.
a1 mod 15 a2 mod 15 a3 mod 15 a4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that ar ≡ 1 mod N



11/15

Period finding

In other words, the problem by now can be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = ax mod N

Find r.



12/15

What to do after quantum algorithm gives you r

I If r is odd or if a
r
2 + 1 ≡ 0 mod N, abandon.

I There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.



13/15

What to do after quantum algorithm gives you r

I If r is odd or if a
r
2 + 1 ≡ 0 mod N, abandon.

I There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD( a
r
2 ± 1, N )

a=2 r=4 22 ± 1 = 4 ± 1
a=4 r=2 41 ± 1 = 4 ± 1
a=7 r=4 72 ± 1 = 49 ± 1
a=8 r=4 82 ± 1 = 64 ± 1
a=11 r=2 111 ± 1 = 11 ± 1
a=13 r=4 132 ± 1 = 169 ± 1
a=14 r=2 142 ± 1 = 196 ± 1

Notice this is why we discarded 14.



14/15

Proof why this works and why factoring is modular square root

ar ≡ 1 mod N

So now a
r
2 is a nontrivial square root of 1 mod N.

ar − 1 ≡ 0 mod N

(a
r
2 − 1)(a

r
2 + 1) ≡ 0 mod N

(a
r
2 − 1)(a

r
2 + 1)

N
is an integer



15/15

Proof why this works and why factoring is modular square root

(a
r
2 − 1)(a

r
2 + 1)

N
is an integer

a
r
2−1
N is not an integer

Because that would imply
a

r
2 − 1 ≡ 0 mod N

a
r
2 ≡ 1 mod N

but we already defined r is the smallest

a
r
2 +1
N is not an integer

Because that would imply
a

r
2 + 1 ≡ 0 mod N

Which we already eliminated


	Announcements
	The factoring problem
	The classical part: converting factoring to order finding / period finding

