Shor's factoring algorithm: the classical part

Yipeng Huang

Rutgers University
October 6, 2021

Table of contents

Announcements

The factoring problem

The classical part: converting factoring to order finding / period finding

Intermediate-term class plan

Where we are headed in first month

1. Fundamentals: superposition / Deutsch-Jozsa
2. Fundamentals: entanglement / Bell inequalities
3. Programming examples in Google Cirq
4. Shor's algorithm (new)
5. A NISQ algorithm: quantum approximate optimization algorithm
6. Programming assignment on QAOA in Cirq

Table of contents

Announcements

The factoring problem

The classical part: converting factoring to order finding / period finding

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b^{2} time.
2. Best known classical algorithm to factor a b-bit number: on order of about $2 \sqrt[3]{b}$ time.

- Makes multiplying large primes a candidate one-way function.
- It's an open question of mathematics to prove whether one way functions exist.

Public key cryptography

Numberphile YouTube channel explanation of RSA public key cryptography: https://www.youtube.com/watch?v=M7kEpw1tn50

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b^{2} time.
2. Best known classical algorithm to factor a b-bit number: on order of about $2^{\sqrt[3]{b}}$ time.

Quantum integer factoring algorithm

- Quantum algorithm to factor a b-bit number: b^{3}.
- Peter Shor, 1994.
- Important example of quantum algorithm offering exponential speedup.

Table of contents

Announcements

The factoring problem

The classical part: converting factoring to order finding / period finding

The classical part: converting factoring to order finding / period finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to additional ways that future quantum computing can be useful / threatening to existing cryptography.

Factoring

$$
\begin{gathered}
N=p q \\
N=15=3 \times 5
\end{gathered}
$$

Modular square root

Finding the modular square root

$$
s^{2} \quad \bmod N=1
$$

Trivial roots would be $s= \pm 1$.
Are there other roots, and how would it be useful for factoring?

Discrete log

1. Pick a that is relatively prime with N .
2. Efficient to test if relatively prime by finding GCD using Euclid's algorithm. For example, $a=6$ and $n=15$.

Exercise: list the possible a^{\prime} s for $N=15$.

Discrete log

1. Pick a that is relatively prime with N .
2. Efficient to test if relatively prime by finding GCD using Euclid's algorithm. For example, $\mathrm{a}=6$ and $\mathrm{n}=15$.
So now our modular square root problem is:

$$
\begin{aligned}
& a^{r} \quad \bmod N=1 \\
& a^{r} \equiv 1 \quad \bmod N
\end{aligned}
$$

In fact, this algorithm for finding discrete log even more directly attacks other crypto primitives such as Diffie-Hellman key exchange.

Order finding

Our discrete log problem is equivalent to order finding.

	$a^{1} \bmod 15$	$a^{2} \bmod 15$	$a^{3} \bmod 15$	$a^{4} \bmod 15$	
$\mathrm{a}=2$	2	4	8	1	
$\mathrm{a}=4$	4	1	4	1	
$\mathrm{a}=7$	7		13	1	
$\mathrm{a}=8$	8	4			
$\mathrm{a}=11$	11	1		11	1
$\mathrm{a}=13$	13	4	7	1	
$\mathrm{a}=14$	14	1	14	1	

Find smallest r such that $a^{r} \equiv 1 \bmod N$

Period finding

In other words, the problem by now can be phrased as finding the period of a function.

$$
f(x)=f(x+r)
$$

Where

$$
f(x)=a^{x} \quad \bmod N
$$

Find r.

What to do after quantum algorithm gives you r

- If r is odd or if $a^{\frac{r}{2}}+1 \equiv 0 \bmod N$, abandon.
- There is separate theorem saying no more than a quarter of trials would have to be tossed.

Exercise: try for $a=14$.

What to do after quantum algorithm gives you r

- If r is odd or if $a^{\frac{r}{2}}+1 \equiv 0 \bmod N$, abandon.
- There is separate theorem saying no more than a quarter of trials would have to be tossed.

Exercise: try for $a=14$.

Otherwise, factors are $\operatorname{GCD}\left(a^{\frac{r}{2}} \pm 1, \mathrm{~N}\right)$

$$
\begin{array}{ccc}
\mathrm{a}=2 & \mathrm{r}=4 & 2^{2} \pm 1=4 \pm 1 \\
\mathrm{a}=4 & \mathrm{r}=2 & 4^{1} \pm 1=4 \pm 1 \\
\mathrm{a}=7 & \mathrm{r}=4 & 7^{2} \pm 1=49 \pm 1 \\
\mathrm{a}=8 & \mathrm{r}=4 & 8^{2} \pm 1=64 \pm 1 \\
\mathrm{a}=11 & \mathrm{r}=2 & 11^{1} \pm 1=11 \pm 1 \\
\mathrm{a}=13 & \mathrm{r}=4 & 13^{2} \pm 1=169 \pm 1 \\
\mathrm{a}=14 & \mathrm{r}=2 & 14^{2} \pm 1=196 \pm 1
\end{array} \quad \text { Notice this is why we discarded } 14 .
$$

Proof why this works and why factoring is modular square root

$$
a^{r} \equiv 1 \quad \bmod N
$$

So now $a^{\frac{r}{2}}$ is a nontrivial square root of $1 \bmod N$.

$$
\begin{gathered}
a^{r}-1 \equiv 0 \quad \bmod N \\
\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right) \equiv 0 \quad \bmod N \\
\frac{\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right)}{N}
\end{gathered}
$$

is an integer

Proof why this works and why factoring is modular square root

$$
\frac{\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right)}{N}
$$

is an integer
$\frac{a^{\frac{r}{2}}-1}{N}$ is not an integer
Because that would imply

$$
\begin{gathered}
a^{\frac{r}{2}}-1 \equiv 0 \quad \bmod N \\
a^{\frac{r}{2}} \equiv 1 \quad \bmod N
\end{gathered}
$$

but we already defined r is the smallest
$\frac{a^{\frac{r}{2}}+1}{N}$ is not an integer
Because that would imply

$$
a^{\frac{r}{2}}+1 \equiv 0 \quad \bmod N
$$

Which we already eliminated

