Shor's factoring algorithm: the quantum part

Yipeng Huang

Rutgers University

October 11, 2021

Table of contents

The factoring problem

The classical part: converting factoring to order finding / period finding

The quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b^{2} time.
2. Best known classical algorithm to factor a b-bit number: on order of about $2 \sqrt[3]{b}$ time.

- Makes multiplying large primes a candidate one-way function.
- It's an open question of mathematics to prove whether one way functions exist.

Public key cryptography

Numberphile YouTube channel explanation of RSA public key cryptography: https://www.youtube.com/watch?v=M7kEpw1tn50

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b^{2} time.
2. Best known classical algorithm to factor a b-bit number: on order of about $2^{\sqrt[3]{b}}$ time.

Quantum integer factoring algorithm

- Quantum algorithm to factor a b-bit number: b^{3}.
- Peter Shor, 1994.
- Important example of quantum algorithm offering exponential speedup.

Table of contents

The factoring problem

The classical part: converting factoring to order finding / period finding

The quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period

The classical part: converting factoring to order finding / period finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to additional ways that future quantum computing can be useful / threatening to existing cryptography.

Factoring

$$
\begin{gathered}
N=p q \\
N=15=3 \times 5
\end{gathered}
$$

Modular square root

Finding the modular square root

$$
\begin{aligned}
& s^{2} \quad \bmod N=1 \\
& s=\sqrt{1} \quad \bmod N
\end{aligned}
$$

Trivial roots would be $s= \pm 1$.

- Are there other (nontrivial) square roots?
- For $N=15, s= \pm 4, s= \pm 11, s= \pm 14$ are all nontrivial square roots. (Show this).
- Later in these slides, we will see how nontrivial square roots are useful for factoring.

Discrete log

1. Pick a that is relatively prime with N .
2. Efficient to test if relatively prime by finding GCD using Euclid's algorithm. For example, $a=6$ and $n=15$.

Exercise: list the possible a^{\prime} s for $N=15$.

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid's algorithm. For example, $a=6$ and $n=15$.
So now our factoring problem is:

$$
\begin{aligned}
& a^{r} \quad \bmod N=1 \\
& a^{r} \equiv 1 \quad \bmod N
\end{aligned}
$$

In fact, this algorithm for finding discrete log even more directly attacks other crypto primitives such as Diffie-Hellman key exchange.

Order finding

Our discrete log problem is equivalent to order finding.

| | $a^{1} \bmod 15$ | $a^{2} \bmod 15$ | $a^{3} \bmod 15$ | $a^{4} \bmod 15$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{a}=2$ | 2 | 4 | 8 | 1 |
| $\mathrm{a}=4$ | 4 | 1 | 4 | 1 |
| $\mathrm{a}=7$ | 7 | 4 | 13 | 1 |
| $\mathrm{a}=8$ | 8 | 4 | 2 | 1 |
| $\mathrm{a}=11$ | 11 | 1 | 11 | 1 |
| $\mathrm{a}=13$ | 13 | 4 | 7 | 1 |
| $\mathrm{a}=14$ | 14 | 1 | 14 | 1 |

Find smallest r such that $a^{r} \equiv 1 \bmod N$

Period finding

In other words, the problem by now can also be phrased as finding the period of a function.

$$
f(x)=f(x+r)
$$

Where

$$
f(x)=a^{x}=a^{x+r} \quad \bmod N
$$

Find r.

What to do after quantum algorithm gives you r

- If r is odd or if $a^{\frac{r}{2}}+1 \equiv 0 \bmod N$, abandon.
- There is separate theorem saying no more than a quarter of trials would have to be tossed.

Exercise: try for $a=14$.

What to do after quantum algorithm gives you r

- If r is odd or if $a^{\frac{r}{2}}+1 \equiv 0 \bmod N$, abandon.
- There is separate theorem saying no more than a quarter of trials would have to be tossed.

Exercise: try for $a=14$.

Otherwise, factors are $\operatorname{GCD}\left(a^{\frac{r}{2}} \pm 1, \mathrm{~N}\right)$

$$
\begin{array}{rr|l}
\mathrm{a}=2 & \mathrm{r}=4 & 2^{2} \pm 1=4 \pm 1 \\
\mathrm{a}=4 & \mathrm{r}=2 & 4^{1} \pm 1=4 \pm 1 \\
\mathrm{a}=7 & \mathrm{r}=4 & 7^{2} \pm 1=49 \pm 1 \\
\mathrm{a}=8 & \mathrm{r}=4 & 8^{2} \pm 1=64 \pm 1 \\
\mathrm{a}=11 & \mathrm{r}=2 & 11^{1} \pm 1=11 \pm 1 \\
\mathrm{a}=13 & \mathrm{r}=4 & 13^{2} \pm 1=169 \pm 1 \\
\mathrm{a}=14 & \mathrm{r}=2 & 14^{2} \pm 1=196 \pm 1 \quad \text { (bad case) }
\end{array}
$$

Notice why we discarded 14.

Proof why this works and why factoring is modular square root

$$
a^{r} \equiv 1 \quad \bmod N
$$

So now $a^{\frac{r}{2}}$ is a nontrivial square root of $1 \bmod \mathrm{~N}$.

$$
\begin{gathered}
a^{r}-1 \equiv 0 \quad \bmod N \\
\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right) \equiv 0 \quad \bmod N
\end{gathered}
$$

The above implies that

$$
\frac{\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right)}{N}
$$

is an integer. So now we have to prove that

1. $\frac{a^{\frac{r}{2}}-1}{N}$ is not an integer, and
2. $\frac{a^{\frac{r}{2}}+1}{N}$ is not an integer.

Proof why this works and why factoring is modular square root
Suppose $\frac{a^{\frac{r}{2}}-1}{N}$ is an integer
that would imply

$$
\begin{gathered}
a^{\frac{r}{2}}-1 \equiv 0 \quad \bmod N \\
a^{\frac{r}{2}} \equiv 1 \quad \bmod N
\end{gathered}
$$

but we already defined r is the smallest such that $a^{r} \equiv 1 \bmod N$, so there is a contradiction, so $\frac{a^{\frac{r}{2}}-1}{N}$ is not an integer.
Suppose $\frac{\frac{a^{\frac{t}{2}}}{N} \text {.1 }}{N}$ is an integer
that would imply

$$
a^{\frac{r}{2}}+1 \equiv 0 \quad \bmod N
$$

but we already eliminated such cases because we know this doesn't give us a useful result.

Table of contents

The factoring problem

The classical part: converting factoring to order finding / period finding

The quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period

The quantum part: period finding using quantum Fourier transform

- After picking a value for a, use quantum parallelism to calculate modular exponentiation: $a^{x} \bmod N$ for all $0 \leq x \leq 2^{n}-1$ simultaneously.
- Use interference to find a global property, such as the period r.

Calculate modular exponentiation

- See aside to "Patterns and Bugs in Quantum Programs" paper for circuit.
- State after applying modular exponentiation circuit is

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle|f(x)\rangle
$$

- Concretely, using our running example of $N=15$, need $n=4$ qubits to encode, and suppose we picked $a=2$, the state would be

$$
\frac{1}{4} \sum_{x=0}^{15}|x\rangle\left|2^{x} \quad \bmod 15\right\rangle
$$

Measurement of target (bottom, ancillary) qubit register

- We then measure the target qubit register, collapsing it to a definite value. The state of the upper register would then be limited to:

$$
\frac{1}{A} \sum_{a=0}^{A-1}\left|x_{0}+a r\right\rangle
$$

- Concretely, using our running example of $N=15$, and suppose we picked $a=2$, and suppose measurement results in 2 , the upper register would be a uniform superposition of all $|x\rangle$ such that $2^{x}=2 \bmod 15$:

$$
\frac{|1\rangle}{2}+\frac{|5\rangle}{2}+\frac{|9\rangle}{2}+\frac{|13\rangle}{2}
$$

- The key trick now is can we extract the period $r=4$ from such a quantum state.

Quantum Fourier transform to obtain period

The task now is to use Fourier transform to obtain the period.

$$
|\psi\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{2^{n}-1} e^{2 \pi i \omega y}|y\rangle
$$

