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The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3√b

time.

I Makes multiplying large primes a candidate one-way function.
I It’s an open question of mathematics to prove whether one way functions

exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50

https://www.youtube.com/watch?v=M7kEpw1tn50
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The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3√b

time.

Quantum integer factoring algorithm

I Quantum algorithm to factor a b-bit number: b3.
I Peter Shor, 1994.
I Important example of quantum algorithm offering exponential speedup.
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The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.
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Factoring

N = pq

N = 15 = 3× 5
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Modular square root

Finding the modular square root

s2 mod N = 1

s =
√

1 mod N

Trivial roots would be s = ±1.
I Are there other (nontrivial) square roots?
I For N = 15, s = ±4, s = ±11, s = ±14 are all nontrivial square roots. (Show

this).
I Later in these slides, we will see how nontrivial square roots are useful for

factoring.
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Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.



8/18

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a = 6 and n = 15.
So now our factoring problem is:

ar mod N = 1

ar ≡ 1 mod N

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.
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Order finding

Our discrete log problem is equivalent to order finding.
a1 mod 15 a2 mod 15 a3 mod 15 a4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that ar ≡ 1 mod N
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Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = ax = ax+r mod N

Find r.
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What to do after quantum algorithm gives you r

I If r is odd or if a
r
2 + 1 ≡ 0 mod N, abandon.

I There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.
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What to do after quantum algorithm gives you r
I If r is odd or if a

r
2 + 1 ≡ 0 mod N, abandon.

I There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD( a
r
2 ± 1, N )

a=2 r=4 22 ± 1 = 4± 1
a=4 r=2 41 ± 1 = 4± 1
a=7 r=4 72 ± 1 = 49± 1
a=8 r=4 82 ± 1 = 64± 1

a=11 r=2 111 ± 1 = 11± 1
a=13 r=4 132 ± 1 = 169± 1
a=14 r=2 142 ± 1 = 196± 1 (bad case)

Notice why we discarded 14.
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Proof why this works and why factoring is modular square root

ar ≡ 1 mod N

So now a
r
2 is a nontrivial square root of 1 mod N.

ar − 1 ≡ 0 mod N

(a
r
2 − 1)(a

r
2 + 1) ≡ 0 mod N

The above implies that
(a

r
2 − 1)(a

r
2 + 1)

N
is an integer. So now we have to prove that

1. a
r
2−1
N is not an integer, and

2. a
r
2 +1
N is not an integer.
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Proof why this works and why factoring is modular square root

Suppose a
r
2−1
N is an integer

that would imply
a

r
2 − 1 ≡ 0 mod N

a
r
2 ≡ 1 mod N

but we already defined r is the smallest such that ar ≡ 1 mod N, so there is a

contradiction, so a
r
2−1
N is not an integer.

Suppose a
r
2 +1
N is an integer

that would imply
a

r
2 + 1 ≡ 0 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.
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The quantum part: period finding using quantum Fourier transform

I After picking a value for a, use quantum parallelism to calculate modular
exponentiation: ax mod N for all 0 ≤ x ≤ 2n − 1 simultaneously.

I Use interference to find a global property, such as the period r.
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Calculate modular exponentiation

I See aside to "Patterns and Bugs in Quantum Programs" paper for circuit.
I State after applying modular exponentiation circuit is

1√
2n

2n−1∑
x=0

|x〉 |f (x)〉

I Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

1
4

15∑
x=0

|x〉 |2x mod 15〉
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Measurement of target (bottom, ancillary) qubit register

I We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

1
A

A−1∑
a=0

|x0 + ar〉

I Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |x〉 such that 2x = 2 mod 15:

|1〉
2

+
|5〉
2

+
|9〉
2

+
|13〉

2

I The key trick now is can we extract the period r = 4 from such a quantum
state.
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Quantum Fourier transform to obtain period

The task now is to use Fourier transform to obtain the period.

|ψ〉 = 1√
2n

2n−1∑
y=0

e2πiωy |y〉
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