Shor's factoring algorithm: quantum Fourier transform

Yipeng Huang

Rutgers University

October 13, 2021

<□ > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < □ > < □ > < □ > < □ </p>

The classical part: converting factoring to order finding / period finding

The quantum part: period finding using quantum Fourier transform Calculate modular exponentiation Measurement of target (bottom, ancillary) qubit register Quantum Fourier transform to obtain period How to construct the Quantum Fourier transform

The classical part: converting factoring to order finding / period finding

General strategy for the classical part

- 1. Factoring
- 2. Modular square root
- 3. Discrete logarithm
- 4. Order finding
- 5. Period finding

The fact that a quantum algorithm can support all these primitives leads to additional ways that future quantum computing can be useful / threatening to existing cryptography.

Order finding

e al aberete log problem ib equivalent to order intan				
	$a^1 \mod 15$	$a^2 \mod 15$	$a^3 \mod 15$	$a^4 \mod 13$
a=2	2	4	8	1
a=4	4	1	4	1
a=7	7	4	13	1
a=8	8	4	2	1
a=11	11	1	11	1
a=13	13	4	7	1
a=14	14	1	14	1
Find smallest <i>r</i> such that $a^r \equiv 1 \mod N$				

Our discrete log problem is equivalent to order finding. 5

Period finding

In other words, the problem by now can also be phrased as finding the period of a function.

$$f(x) = f(x+r)$$

Where

$$f(x) = a^x = a^{x+r} \mod N$$

◆□▶ < 圖▶ < 圖▶ < 圖▶ < 圖▶ < 圖 < 의 < 0 < 4/12</p>

Find r.

The classical part: converting factoring to order finding / period finding

The quantum part: period finding using quantum Fourier transform Calculate modular exponentiation Measurement of target (bottom, ancillary) qubit register Quantum Fourier transform to obtain period How to construct the Quantum Fourier transform

(日)、(同)、(目)、(目)、(目)、(の)、(5/12)

The quantum part: period finding using quantum Fourier transform

After picking a value for *a*, use quantum parallelism to calculate modular exponentiation: $a^x \mod N$ for all $0 \le x \le 2^n - 1$ simultaneously.

▶ Use interference to find a global property, such as the period *r*.

Calculate modular exponentiation

- Image source: Huang and Martonosi, Statistical assertions for validating patterns and finding bugs in quantum programs, 2019.
- A good source on how to build the controlled adder, controlled multiplier, and controlled exponentiation is in Beauregard, Circuit for Shor's algorithm using 2n+3 qubits, 2002.

Calculate modular exponentiation

State after applying modular exponentiation circuit is

$$rac{1}{\sqrt{2^n}}\sum_{x=0}^{2^n-1}\ket{x}\ket{f(x)}$$

Concretely, using our running example of N = 15, need n = 4 qubits to encode, and suppose we picked a = 2, the state would be

$$\frac{1}{4}\sum_{x=0}^{15}|x\rangle \left| 2^{x} \mod 15 \right\rangle$$

Measurement of target (bottom, ancillary) qubit register

We then measure the target qubit register, collapsing it to a definite value. The state of the upper register would then be limited to:

$$\frac{1}{\sqrt{A}}\sum_{a=0}^{A-1}|x_0+ar\rangle$$

Concretely, using our running example of *N* = 15, and suppose we picked *a* = 2, and suppose measurement results in 2, the upper register would be a uniform superposition of all |*x*⟩ such that 2^{*x*} ≡ 2 mod 15:

$$\frac{|1\rangle}{2}+\frac{|5\rangle}{2}+\frac{|9\rangle}{2}+\frac{|13\rangle}{2}$$

The key trick now is can we extract the period r = 4 from such a quantum state. We do this using the quantum Fourier transform.

Quantum Fourier transform to obtain period

The task now is to use Fourier transform to obtain the period.

$$QFT(|x\rangle) = \frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{2^{n}-1} e^{\frac{2\pi i}{2^{n}}xy} |y\rangle$$
$$QFT = \frac{1}{\sqrt{2^{n}}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{2^{n}-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(2^{n}-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{2^{n}-1} & \omega^{2(2^{n}-1)} & \cdots & \omega^{(2^{n}-1)(2^{n}-1)} \end{bmatrix}$$

Where

$$\omega = e^{\frac{2\pi i}{2^n}}$$

And recall that

$$e^{ix} = \cos x + i \sin x$$

Quantum Fourier transform to obtain period

The task now is to use Fourier transform to obtain the period.

$$QFT\left(\left|x\right\rangle\right) = \frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{2^{n}-1} e^{\frac{2\pi i}{2^{n}} xy} \left|y\right\rangle$$

$$QFT\left(\frac{1}{\sqrt{A}}\sum_{a=0}^{A-1}|x_0+ar\rangle\right)$$
$$=\frac{1}{\sqrt{2^n}}\sum_{y=0}^{2^n-1}\left(\frac{1}{\sqrt{A}}\sum_{a=0}^{A-1}e^{\frac{2\pi i}{2^n}(x_0+ar)y}\right)|y|$$
$$=\sum_{y=0}^{2^n-1}\left(\frac{1}{\sqrt{2^nA}}e^{\frac{2\pi i}{2^n}x_0y}\sum_{a=0}^{A-1}e^{\frac{2\pi i}{2^n}ary}\right)|y\rangle$$

(ロ)、(型)、(E)、(E)、(E)、(C)、(10/12)

Quantum Fourier transform to obtain period

$$Prob(y) = \frac{A}{2^{n}} \left| \frac{1}{A} e^{\frac{2\pi i}{2^{n}} x_{0}y} \sum_{a=0}^{A-1} e^{\frac{2\pi i}{2^{n}} ary} \right|^{2}$$
$$= \frac{A}{2^{n}} \left| \frac{1}{A} \sum_{a=0}^{A-1} e^{\frac{2\pi i}{2^{n}} ary} \right|^{2}$$

• Here, values of *y* such that $\frac{ry}{2^n}$ is close to an integer will have maximal measurement probability.

• In our case, only $\frac{ry}{2^n} = \frac{4\cdot 4}{16}$, $|y\rangle = |4\rangle$ will have high measurement probability.

► To get a beautiful explanation of principle of least action, read Feynman, QED.

How to construct the Quantum Fourier transform

1.

2.

3.

4.

 $R_k = \begin{bmatrix} 1 & 0\\ 0 & \exp\frac{2\pi i}{2^k} \end{bmatrix}$

- Cost of computing the FFT for functions encoded in n bits: O(2ⁿn)
- Cost of quantum Fourier transform for functions encoded in n qubits: O(n²) gates.

$$R_{0} = \begin{bmatrix} 1 & 0 \\ 0 & \exp \frac{2\pi i}{2^{0}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
$$R_{1} = \begin{bmatrix} 1 & 0 \\ 0 & \exp \frac{2\pi i}{2^{1}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = Z$$
$$R_{2} = \begin{bmatrix} 1 & 0 \\ 0 & \exp \frac{2\pi i}{2^{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = S$$
$$\begin{bmatrix} 1 & 0 \\ 0 & \exp \frac{2\pi i}{2^{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = S$$

$$R_3 = \begin{bmatrix} 1 & 0 \\ 0 & \exp\frac{2\pi i}{2^3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{\sqrt{2}}{2} + \frac{\sqrt{2}i}{2} \end{bmatrix} = T$$