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The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.
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Order finding

Our discrete log problem is equivalent to order finding.
a1 mod 15 a2 mod 15 a3 mod 15 a4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that ar ≡ 1 mod N
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Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = ax = ax+r mod N

Find r.
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The quantum part: period finding using quantum Fourier transform

I After picking a value for a, use quantum parallelism to calculate modular
exponentiation: ax mod N for all 0 ≤ x ≤ 2n − 1 simultaneously.

I Use interference to find a global property, such as the period r.
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Calculate modular exponentiation

Controlled adder (Section 4.3; Listing 2, 3)

Controlled modular multiplier (Listing 4)

Controlled modular exponentiation

Lower target register
Classical initial state

(Section 4.1)

Deallocated ancillary qubits
Classical final state

(Section 4.6)

Increasing entanglement “memory allocation” (Section 4.4) Decreasing entanglement “garbage collection” (Section 4.5)

Quantum 
Fourier 

transform
(Section 4.2; 

Listing 1)

Inverse 
quantum 
Fourier 

transform

Upper control register
Classical initial state

(Section 4.1)
Measurement

Classical
result

I Image source: Huang and Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, 2019.

I A good source on how to build the controlled adder, controlled multiplier,
and controlled exponentiation is in Beauregard, Circuit for Shor’s algorithm
using 2n+3 qubits, 2002.
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Calculate modular exponentiation

I State after applying modular exponentiation circuit is

1√
2n

2n−1∑
x=0

|x〉 |f (x)〉

I Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

1
4

15∑
x=0

|x〉 |2x mod 15〉
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Measurement of target (bottom, ancillary) qubit register

I We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

1√
A

A−1∑
a=0

|x0 + ar〉

I Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |x〉 such that 2x ≡ 2 mod 15:

|1〉
2

+
|5〉
2

+
|9〉
2

+
|13〉

2

I The key trick now is can we extract the period r = 4 from such a quantum
state. We do this using the quantum Fourier transform.
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Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

QFT
(
|x〉
)
=

1√
2n

2n−1∑
y=0

e
2πi
2n xy |y〉

QFT =
1√
2n


1 1 1 · · · 1
1 ω ω2 · · · ω2n−1

1 ω2 ω4 · · · ω2(2n−1)

...
...

...
. . .

...
1 ω2n−1 ω2(2n−1) · · · ω(2n−1)(2n−1)


Where

ω = e
2πi
2n

And recall that
eix = cos x + i sin x
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Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

QFT
(
|x〉
)
=

1√
2n

2n−1∑
y=0

e
2πi
2n xy |y〉

QFT

(
1√
A

A−1∑
a=0

|x0 + ar〉

)

=
1√
2n

2n−1∑
y=0

(
1√
A

A−1∑
a=0

e
2πi
2n (x0+ar)y

)
|y〉

=

2n−1∑
y=0

(
1√
2nA

e
2πi
2n x0y

A−1∑
a=0

e
2πi
2n ary

)
|y〉
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Quantum Fourier transform to obtain period

Prob(y) =
A
2n

∣∣∣∣∣ 1
A

e
2πi
2n x0y

A−1∑
a=0

e
2πi
2n ary

∣∣∣∣∣
2

=
A
2n

∣∣∣∣∣ 1
A

A−1∑
a=0

e
2πi
2n ary

∣∣∣∣∣
2

I Here, values of y such that ry
2n is close to an integer will have maximal

measurement probability.
I In our case, only ry

2n = 4·4
16 , |y〉 = |4〉will have high measurement probability.

I To get a beautiful explanation of principle of least action, read Feynman, QED.
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How to construct the Quantum Fourier transform

I Cost of computing
the FFT for
functions encoded
in n bits: O(2nn)

I Cost of quantum
Fourier transform
for functions
encoded in n
qubits: O(n2) gates.

Rk =

[
1 0
0 exp 2πi

2k

]
1.

R0 =

[
1 0
0 exp 2πi

20

]
=

[
1 0
0 1

]
= I

2.

R1 =

[
1 0
0 exp 2πi

21

]
=

[
1 0
0 −1

]
= Z

3.

R2 =

[
1 0
0 exp 2πi

22

]
=

[
1 0
0 i

]
= S

4.

R3 =

[
1 0
0 exp 2πi

23

]
=

[
1 0
0
√

2
2 +

√
2i

2

]
= T
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