
1/52

Wrapping up Shor’s and QFT; Quantum Approximate
Optimization Algorithm

Yipeng Huang

Rutgers University

October 18, 2021

2/52

Table of contents

The quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

2/52

The quantum part: period finding using quantum Fourier transform

▶ After picking a value for a, use quantum parallelism to calculate modular
exponentiation: ax mod N for all 0 ≤ x ≤ 2n − 1 simultaneously.

▶ Use interference to find a global property, such as the period r.

3/52

Calculate modular exponentiation

Controlled adder (Section 4.3; Listing 2, 3)

Controlled modular multiplier (Listing 4)

Controlled modular exponentiation

Lower target register
Classical initial state

(Section 4.1)

Deallocated ancillary qubits
Classical final state

(Section 4.6)

Increasing entanglement “memory allocation” (Section 4.4) Decreasing entanglement “garbage collection” (Section 4.5)

Quantum
Fourier

transform
(Section 4.2;

Listing 1)

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

(Section 4.1)
Measurement

Classical
result

▶ Image source: Huang and Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, 2019.

▶ A good source on how to build the controlled adder, controlled multiplier,
and controlled exponentiation is in Beauregard, Circuit for Shor’s algorithm
using 2n+3 qubits, 2002.

4/52

Calculate modular exponentiation

▶ State after applying modular exponentiation circuit is

1√
2n

2n−1∑
x=0

|x⟩ |f (x)⟩

▶ Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

1
4

15∑
x=0

|x⟩ |2x mod 15⟩

5/52

Measurement of target (bottom, ancillary) qubit register

▶ We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

1√
A

A−1∑
a=0

|x0 + ar⟩

▶ Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |x⟩ such that 2x ≡ 2 mod 15:

|1⟩
2

+
|5⟩
2

+
|9⟩
2

+
|13⟩

2

▶ The key trick now is can we extract the period r = 4 from such a quantum
state. We do this using the quantum Fourier transform.

6/52

Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

QFT
(
|x⟩
)
=

1√
2n

2n−1∑
y=0

e
2πi
2n xy |y⟩

QFT =
1√
2n


1 1 1 · · · 1
1 ω ω2 · · · ω2n−1

1 ω2 ω4 · · · ω2(2n−1)

...
...

...
. . .

...
1 ω2n−1 ω2(2n−1) · · · ω(2n−1)(2n−1)


Where

ω = e
2πi
2n

And recall that
eix = cos x + i sin x

7/52

Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

QFT
(
|x⟩
)
=

1√
2n

2n−1∑
y=0

e
2πi
2n xy |y⟩

QFT

(
1√
A

A−1∑
a=0

|x0 + ar⟩

)

=
1√
2n

2n−1∑
y=0

(
1√
A

A−1∑
a=0

e
2πi
2n (x0+ar)y

)
|y⟩

=

2n−1∑
y=0

(
1√
2nA

e
2πi
2n x0y

A−1∑
a=0

e
2πi
2n ary

)
|y⟩

8/52

Quantum Fourier transform to obtain period

Prob(y) =
A
2n

∣∣∣∣∣ 1
A

e
2πi
2n x0y

A−1∑
a=0

e
2πi
2n ary

∣∣∣∣∣
2

=
A
2n

∣∣∣∣∣ 1
A

A−1∑
a=0

e
2πi
2n ary

∣∣∣∣∣
2

▶ Here, values of y such that ry
2n is close to an integer will have maximal

measurement probability.
▶ In our case, only ry

2n = 4·4
16 , |y⟩ = |4⟩ will have high measurement probability.

▶ To get a beautiful explanation of principle of least action, read Feynman, QED.

9/52

How to construct the Quantum Fourier transform

Figure: Credit: Wikimedia

10/52

How to construct the Quantum Fourier transform

▶ Cost of computing
the FFT for
functions encoded
in n bits: O(2nn)

▶ Cost of quantum
Fourier transform
for functions
encoded in n
qubits: O(n2) gates.

Rk =

[
1 0
0 exp 2πi

2k

]
1.

R0 =

[
1 0
0 exp 2πi

20

]
=

[
1 0
0 1

]
= I

2.

R1 =

[
1 0
0 exp 2πi

21

]
=

[
1 0
0 −1

]
= Z

3.

R2 =

[
1 0
0 exp 2πi

22

]
=

[
1 0
0 i

]
= S

4.

R3 =

[
1 0
0 exp 2πi

23

]
=

[
1 0
0

√
2

2 +
√

2i
2

]
= T

11/52

Time cost and implementation

Factoring underpins cryptosystems.

For number represented as b bits:

▶ Classical algorithm: needs O(2
3√b) operations. Factoring 512-bit integer: 8400

years. 1024-bit integer: 13 × 1012 years.
▶ Quantum algorithm: needs O(b2log(b)) operations. Factoring 512-bit integer:

3.5 hours. 1024-bit integer: 31 hours.

Source: Oskin et al. A Practical Architecture for Reliable Quantum Computers.

12/52

Time cost and implementation

Figure: Credit: Van
Meter and Horsman.
A Blueprint for
Building a Quantum
Computer.
Communications of
the ACM. 2013.

13/52

Near-term and far-future quantum computing

Figure: Credit:
Maslov, Nam, and
Kim. An Outlook for
Quantum Computing.
Proceedings of the
IEEE. 2019.

14/52

Steps toward useful quantum computing

Figure: Credit: National Academies of Sciences,
Engineering, and Medicine. Quantum Computing:
Progress and Prospects. 2019.

15/52

Near-term intermediate-scale quantum (NISQ) computers

The limitations of near term quantum computers
▶ NISQ systems have limited number of qubits:

No error correction.
(In contrast, error corrected Shor’s would need a million qubits.)

▶ NISQ systems have limited coherence time:
Relative shallow depth of circuits.
(In contrast, error corrected Shor’s would need hundreds of millions of gates.)

▶ NISQ systems have limited operation accuracy

16/52

NISQ variational algorithms
Use a classical algorithm to train a "quantum neural network".

Figure:
Credit: [Guerreschi and Smelyanskiy, 2017]

17/52

NISQ variational algorithms

Use a classical algorithm to train a "quantum neural network".
1. Quantum computer prepares a quantum state that is a function of classical

parameters.
2. Quantum computer measures quantum state to provide classical

observations.
3. Classical computer uses observations to calculate an objective function.
4. Classical computer uses optimization routine to propose new classical

parameters to maximize objective function.
5. Repeating steps 1 through 4, the algorithm leads to better approximations to

underlying problem.

18/52

NISQ variational algorithms

Benefits of quantum-classical scheme:
1. Provides meaningful results even without error correction
2. Shallow circuits (not many operations on each qubit)
3. Draws on strengths of quantum and classical:
4. Prepare and measure a quantum state
5. Optimize for a set of optimal parameters based on classical measurements

19/52

NISQ variational algorithms

Great! Can NISQ variational algorithms solve useful problems?
1. Variational quantum eigensolver (VQE):

Simulate quantum mechanics
2. Quantum approximate optimization algorithm (QAOA):

Approximate solutions to constraint satisfaction problems
(CSPs) [Farhi et al., 2014]

20/52

Constraint satisfaction problems ∈ Combinatorial optimization
problems

▶ 3SAT
▶ Traveling salesman
▶ Knapsack
▶ Graph coloring

21/52

Boolean satisfiability problem

▶ 3-SAT: NP-Complete
▶ n bits; m constraints/clauses
▶ A Boolean formula consisting of m clauses

C1 ∧ C2 ∧ ... ∧ Cm
For example:
(¬z0 ∨ z1 ∨ z2) ∧ (¬z1 ∨ z2 ∨ z3) ∧ ... ∧ Cm

▶ Cα depends only on l = 3 coordinates of z⃗.
▶ Each clause Cα is either True or False.

for each constraint α ∈ [m] and each n-bit string z⃗ ∈ {0, 1}n, define

Cα(⃗z) =

{
1 if z⃗ satisfies the constraint α
0 if z⃗ does not

22/52

3-SAT and connections

Figure: Credit: Dasgupta, Papadimitriou, and Vazirani. Algorithms.

23/52

Constraint satisfaction problem (CSP): MAX-SAT

▶ MAX-SAT: NP-Hard
▶ A Boolean formula consisting of m clauses

C1 ∧ C2 ∧ ... ∧ Cm

▶ Each clause Cα is either True or False.
for each constraint α ∈ [m] and each n-bit string z⃗ ∈ {0, 1}n, define

Cα(⃗z) =

{
1 if z⃗ satisfies the constraint α
0 if z⃗ does not

▶ Satisfy as many clauses as possible to maximize objective function C(z):

max
z⃗

C(⃗z) = max
z⃗

m∑
α=1

Cα(⃗z)

24/52

Approximate MAX-SAT

Approximate the maximum:

max
z⃗

C(⃗z) = max
z⃗

m∑
α=1

Cα(⃗z)

25/52

Constraint satisfaction problem (CSP): MAX-CUT
▶ Given an arbitrary undirected graph

G = (V(G),E(G))
▶ goal of MAX-CUT is to assign one of two partitions to each node so as to

maximize the number of cuts

Figure: Credit: Quantum Algorithm Implementations for Beginners Coles.

26/52

Constraint satisfaction problem (CSP): MAX-CUT

▶ Given an arbitrary undirected graph
G = (V(G),E(G))

▶ goal of MAX-CUT is to assign one of two partitions σi ∈ {−1,+1} to each
node i ∈ V(G) so as to maximize the number of cuts

▶ Identical form to the MAX-SAT problem with objective function C(σ⃗):
max
σ⃗

C(σ⃗) = max
σ⃗

∑
<jk>∈E(G)

C<jk>(σ⃗)

▶ But the constraints are now:

C<jk>(σ⃗) =
1
2
(1 − σjσk) =

{
1 if σj and σk are different
0 if σj and σk are the same

27/52

QAOA for MAX-CUT: general strategy

Figure:
Credit: [Guerreschi and Smelyanskiy, 2017]

28/52

QAOA for MAX-CUT: general strategy

1. Each node in n nodes of the MAX-CUT graph corresponds to one of n qubits
in the quantum circuit.

2. The state vector across the qubits |ψ⟩ encodes a node partitioning
σ⃗ ∈ {−1,+1}n

3. Put the initial state vector |ψs⟩ in a superposition of all possible node
partitionings

4. Need an operator (quantum gate) that encodes an edge < jk >∈ E(G)

5. Provide classical parameters such that the classical computer can control
quantum partitioning

6. Perform a series of operations parameterized by classical parameters γ⃗ and β⃗
such that the final state vector |ψ(γ⃗, β⃗)⟩ is a superposition of good
partitionings

7. Optimize for a good set of γ⃗ and β⃗

29/52

QAOA for MAX-CUT: general strategy

Figure: Credit: Classical variational simulation of the Quantum Approximate
Optimization Algorithm. Medvidovic and Carleo.

30/52

1. Each node in n nodes of the MAX-CUT graph corresponds to one
of n qubits in the quantum circuit.

Let’s use an n = 3 example in the figure.

q1

q0 q2

Figure: G = (V(G),E(G)) = ({q0, q1, q2}, {< q0q1 >,< q1q2 >})

|ψ⟩ = α0 |000⟩+ α1 |001⟩ ...+ α7 |111⟩ =


α0
α1
...
α7


So now we have quantum amplitudes for each of the basis states.

Probability of measuring outcome z is |αz|2.
n−1∑
z=0

|αz|2 = 1

31/52

2. The state vector across the qubits |ψ⟩ encodes a node partitioning

q1

q0 q2|0⟩ |0⟩

|1⟩

Figure: A max-cut corresponding to |ψ⟩ = |010⟩.

▶ In our n = 3 running example, |ψ⟩ = |010⟩, α2 = 1,
α0 = α1 = α3 = α4 = α5 = α6 = α7 = 0, is a max-cut.

▶ The other max-cut is |ψ⟩ = |101⟩.

▶ A superposition |ψ⟩ = 1√
2
|010⟩+ 1√

2
|101⟩ would be an equal superposition

of the two max cuts.

32/52

3. Put the initial state vector |ψs⟩ in a superposition of all possible
node partitionings

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.

33/52

3. Put the initial state vector |ψs⟩ in a superposition of all possible
node partitionings

A superposition across all the bitstrings representing partitionings.

|ψs⟩ = |+⟩⊗n = H⊗n |0⟩⊗n =
1√
2n

2n−1∑
z=0

|z⟩

34/52

3. Put the initial state vector |ψs⟩ in a superposition of all possible
node partitionings

In our n = 3 running example:

|+⟩⊗n = H⊗3 |0⟩⊗3 =

[
+1√

2
+1√

2
+1√

2
−1√

2

]⊗3 [
1
0

]⊗3

=


+1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
+1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
+1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
−1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
⊗

[
+1√

2
+1√

2
+1√

2
−1√

2

] [
1
0

]⊗3

=
1√
8

7∑
z=0

|z⟩ = [
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
]†

35/52

4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

▶ In the Max-Cut type of CSP, constraints correspond to edges

▶ C =
∑

<jk>∈E(G)

C<jk> =
∑

<jk>∈E(G)

1
2
(1 − σz

j ⊗ σz
k)

▶ σz
i is the Pauli-Z operator on qubit i

▶ σz =

[
+1 0
0 −1

]
▶ Claim: ψ that maximizes ⟨ψ|C |ψ⟩ is the graph partition with the maximum

cut.

36/52

4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

In our n = 3 running example:

q1

q0 q2

Figure: G = (V(G),E(G)) = ({q0, q1, q2}, {<
q0q1 >,< q1q2 >})

C =
∑

<jk>∈E(G)

1
2
(1 − σz

j ⊗ σz
k) =

1
2
(1 − σz

0 ⊗ σz
1) +

1
2
(1 − σz

1 ⊗ σz
2) =

1
2
(I − σz ⊗ σz ⊗ I) +

1
2
(I − I ⊗ σz ⊗ σz) =

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0



37/52

4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

q1

q0 q2|0⟩ |0⟩

|1⟩

Figure: A max-cut corresponding to
|ψ⟩ = |010⟩.

▶ Claim: ψ that maximizes ⟨ψ|C |ψ⟩ is
the graph partition with the
maximum cut.

▶ ⟨010|C |010⟩ =

0
0
1
0
0
0
0
0



† 

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0





0
0
1
0
0
0
0
0


=

2

38/52

4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

▶ ⟨010|C |010⟩ =



0
0
1
0
0
0
0
0



† 

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0





0
0
1
0
0
0
0
0


= 2

▶ Note the size of state vector |ψ⟩ is 2n.
▶ Size of constraint matrix C is 2n × 2n.
▶ We wouldn’t want to construct C explicitly, but it can be created effciently

using gates and tensor products.
▶ We will enlist a quantum computer to create |ψ⟩ and C.

39/52

5. Provide classical parameters such that the classical computer can
control quantum partitioning

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.

40/52

5. Provide classical parameters such that the classical computer can
control quantum partitioning

▶ A parameter p that controls how many iterations of algorithm and how
complete of a graph to see.

▶ Do optimization across 2p-dimensional vector of γ⃗ and β⃗ parameters
▶ (γ⃗, β⃗) = (γ1, β1, ...γp, βp)

▶ γi ∈ [0, 2π]
▶ βi ∈ [0, π]

41/52

6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.

42/52

6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

U(C, γ), U(B, β) are 2n × 2n linear operators (Unitary matrices)

1. Problem Hamiltonian enforces constraints.
A product across all the graph edges.
U(C, γ) = e−iγC =

∏
<jk>∈E(G)

e−iγC<jk>

2. Admixing Hamiltonian perturbs the assignments.
A product across all the qubits representing graph vertices.
U(B, β) = e−iβB =

∏
q∈V(G)

e−iβσx
q

43/52

6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.

44/52

6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

▶ Create ansatz states |ψ(γ⃗, β⃗)⟩
▶ |ψ(γ⃗, β⃗)⟩ = U(B, βp)U(C, γp)...U(B, β1)U(C, γ1) |ψs⟩ =

p∏
i=1

(∏
q∈V(G)

e−iβiσ
x
q

∏
<jk>∈E(G)

e−iγiC<jk>

)
|+⟩⊗n

45/52

7. Optimize for a good set of γ⃗ and β⃗

▶ Measure this state to compute the objective function. That is, given the
current set of parameters γ⃗ and β⃗, how much of the CSP is satisified

▶ Use a classical optimization algorithm such as Nelder-Mead to maximize
Fp(γ⃗, β⃗) = ⟨ψ(γ⃗, β⃗)|C |ψ(γ⃗, β⃗)⟩

46/52

Evaluation of QAOA for NISQ: Number of iterations?

▶ Let Mp be the maximum of Fp over the angles: Mp = max
γ⃗,β⃗

Fp(γ⃗, β⃗)

▶ QAOA needs a big parameter p to see the whole graph

▶ As p → ∞, lim
p→∞

Mp = max
z

C(z)

47/52

Evaluation of QAOA for NISQ: Number of iterations?

Figure: Credit: [Arute et al., 2020]

48/52

Evaluation of QAOA for NISQ: Number of qubits?

Figure: Credit: [Guerreschi and Matsuura, 2019]

49/52

Evaluation of QAOA for NISQ: Number of constraints?

▶ Findings for MAX-CUT on connected 3-regular graphs [Farhi et al., 2014]
1. For p = 1, QAOA will always produce a cut whose size is at least 0.6924 times

the size of the optimal cut.
2. This was the best known possible approximation for a few months until classical

algorithm found.
3. For p = 2, the approximation ratio becomes 0.7559 and grows depending on the

type of graph.

▶ Difficulty of solving problems with higher constraint
ratios [Akshay et al., 2020]

50/52

Evaluation of QAOA for NISQ: Optimization method?

Optimization using gradients [Guerreschi and Smelyanskiy, 2017].

51/52

Evaluation of QAOA for NISQ: Generalizations?

▶ Can be generalized to solve related problems [Hadfield et al., 2019].
▶ Factoring [Anschuetz et al., 2019].

52/52

Read also

▶ Primary sources: [Farhi et al., 2014]
▶ Additional source: [Wang and Abdullah, 2018]

52/52

Akshay, V., Philathong, H., Morales, M. E. S., and Biamonte, J. D. (2020).
Reachability deficits in quantum approximate optimization.
Phys. Rev. Lett., 124:090504.

Anschuetz, E., Olson, J., Aspuru-Guzik, A., and Cao, Y. (2019).
Variational quantum factoring.
In Feld, S. and Linnhoff-Popien, C., editors, Quantum Technology and Optimization Problems, pages 74–85,
Cham. Springer International Publishing.

Arute, F. C., Arya, K., Babbush, R., Bacon, D., Bardin, J., Barends, R., Boixo, S., Broughton, M. B., Buckley,
B. B., Buell, D. A., Burkett, B., Bushnell, N., Chen, J., Chen, Y., Chiaro, B., Collins, R., Courtney, W., Demura,
S., Dunsworth, A., Farhi, E., Fowler, A., Foxen, B. R., Gidney, C. M., Giustina, M., Graff, R., Habegger, S.,
Harrigan, M., Hong, S., Ioffe, L., Isakov, S., Jeffrey, E., Jiang, Z., Jones, C., Kafri, D., Kechedzhi, K., Kelly, J.,
Kim, S., Klimov, P., Korotkov, A., Kostritsa, F., Landhuis, D., Laptev, P., Leib, M., Lindmark, M., Lucero, E.,
Martin, O., Martinis, J., McClean, J. R., McEwen, M., Megrant, A., Mi, X., Mohseni, M., Mruczkiewicz, W.,
Mutus, J., Naaman, O., Neeley, M., Neill, C., Neukart, F., Neven, H., Niu, M. Y., O’Brien, T. E., O’Gorman,
B., Petukhov, A., Putterman, H., Quintana, C., Roushan, P., Rubin, N., Sank, D., Satzinger, K., Skolik, A.,
Smelyanskiy, V., Strain, D., Streif, M., Sung, K. J., Szalay, M., Vainsencher, A., White, T., Yao, J., Zalcman, A.,
and Zhou, L. (2020).
Quantum approximate optimization of non-planar graph problems on a planar superconducting processor.
arXiv:2004.04197.

Farhi, E., Goldstone, J., and Gutmann, S. (2014).
A quantum approximate optimization algorithm.
arXiv preprint arXiv:1411.4028.

Guerreschi, G. G. and Matsuura, A. Y. (2019).
Qaoa for max-cut requires hundreds of qubits for quantum speed-up.

52/52

Scientific Reports, 9(1):6903.

Guerreschi, G. G. and Smelyanskiy, M. (2017).
Practical optimization for hybrid quantum-classical algorithms.
arXiv preprint arXiv:1701.01450.

Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E. G., Venturelli, D., and Biswas, R. (2019).
From the quantum approximate optimization algorithm to a quantum alternating operator ansatz.
Algorithms, 12(2):34.

Wang, Q. and Abdullah, T. (2018).
An introduction to quantum optimization approximation algorithm.

	The quantum part: period finding using quantum Fourier transform
	Calculate modular exponentiation
	Measurement of target (bottom, ancillary) qubit register
	Quantum Fourier transform to obtain period
	How to construct the Quantum Fourier transform
	Evaluation of Shor's as a fault-tolerant quantum algorithm

