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Long-range class plan

Date | Class topic Readings and assignments
10/20 | NISQ algorithms: QAOA
10/25 | NISQ algorithms: QAOA QAOA lab out
10/27 | Quantum computing: systems view New reading assignment release
11/1 | Languages: stabilizers
11/3 | Languages: tensor networks
11/8 | Languages: density matrices, noise QAOA lab part 1 due
11/10 | Languages: logical abstractions
11/15 | Quantum error correction codes
11/17 | NISQ algorithms: quantum chemistry
11/22 | NISQ algorithms: VQE QAOA lab all due, VQE lab out
11/29 | Architecture
12/1 | Microarchitecture
12/6 | Devices: superconductors VQE lab part 1 due
12/8 | Devices: ion traps

12/13

Conclusion
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Steps from NISQ toward FTQC
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Applications of near-term and far-future quantum computing
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Fig. 2. space of by the error ility of each ing gate in the hori: axis
(roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the
system in the vertical axis. Blue dotted line systems that can be simulated using best classical
computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie

(as of September 2018). Purple shaded region tasks that the lled P y,” where the
computation carried out by the quantum computer defies classical of its The shapes

resource counts for solving various problems, with solid symbols to the exact gate counts and number of qubits in
NISQ machines, and shaded regions showing gate error req and number of qubits for an FT implementation (not

pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region
correspond to factoring a 1024-bit number using Shor’s algorithm [14], magenta circle and shaded region represent simulation of a 72-spin
Heisenberg model [20], and orange shaded region illustrates NF simulation [21].

Figure: Credit:
Maslov, Nam, and
Kim. An Outlook for
Quantum Computing.
Proceedings of the
IEEE. 2019.
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Near-term intermediate-scale quantum (NISQ) computers

The limitations of near term quantum computers

» NISQ systems have limited number of qubits:
No error correction.
(In contrast, error corrected Shor’s would need a million qubits.)
» NISQ systems have limited coherence time:
Relative shallow depth of circuits.
(In contrast, error corrected Shor’s would need hundreds of millions of gates.)

» NISQ systems have limited operation accuracy
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NISQ variational algorithms
Use a classical algorithm to train a "quantum neural network".
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FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have
to be repeated until convergence or when a sufficiently good quality of the solution is reached. 1) State
preparation involving the quantum hardware capable of tunable gates characterized by parameters v, (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the 640



NISQ variational algorithms

Use a classical algorithm to train a "quantum neural network".

1. Quantum computer prepares a quantum state that is a function of classical
parameters.

2. Quantum computer measures quantum state to provide classical
observations.

3. Classical computer uses observations to calculate an objective function.

4. Classical computer uses optimization routine to propose new classical
parameters to maximize objective function.

5. Repeating steps 1 through 4, the algorithm leads to better approximations to
underlying problem.
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NISQ variational algorithms

Great! Can NISQ variational algorithms solve useful problems?
1. Variational quantum eigensolver (VQE):
Simulate quantum mechanics
2. Quantum approximate optimization algorithm (QAOA):

Approximate solutions to constraint satisfaction problems
(CSPs) [Farhi et al., 2014]
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Constraint satisfaction problem (CSP): MAX-CUT

» Given an arbitrary undirected graph
G = (V(G),E(G))

» goal of MAX-CUT is to assign one of two partitions to each node so as to

maximize the number of cuts

\ 7 \ /!
N4 5 Cut L)
FIG. 39: An illustration of the MaxCut problem.

Figure: Credit: Quantum Algorithm Implementations for Beginners Coles.
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Constraint satisfaction problem (CSP): MAX-CUT

» Given an arbitrary undirected graph
G = (V(G),E(G))

» goal of MAX-CUT is to assign one of two partitions o; € {1, +1} to each
node i € V(G) so as to maximize the number of cuts

» Identical form to the MAX-SAT problem with objective function C(¢):
max C(o) = max Z Cojt>(0)

<jk>€E(G)
» But the constraints are now:

C ) 1 a ) 1 if oj and oy are different
i>(0) = =1 —ojoy) =
<jk> 2 1%k 0 if 0; and oy are the same
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QAOA for MAX-CUT: general strategy

1.

Each node in 7 nodes of the MAX-CUT graph corresponds to one of n qubits
in the quantum circuit.

. The state vector across the qubits |¢’) encodes a node partitioning

F e {—1,+1}"

. Put the initial state vector |¢)s) in a superposition of all possible node

partitionings

Need an operator (quantum gate) that encodes an edge < jk >¢ E(G)

. Provide classical parameters such that the classical computer can control

quantum partitioning

. Perform a series of operations parameterized by classical parameters 7 and g

-,

such that the final state vector [¢)(7, 3)) is a superposition of good
partitionings

. Optimize for a good set of 7 and
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QAOA for MAX-CUT: general strategy
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FIG. 1. A schematic representation of the QAOA circuit and our approach to simulating it. The input state is triviall
initialized to |+). Next, at each p, the exchange of exactly (Uc, Sec.|IIB 1) and approximately (RX(8) = e~"#*, Sec.
applicable gates is labeled. As noted in the main text, each (exact) application of the Uc gate leads to an increase in the
number of hidden units by |E| (the number of edges in the graph). In order to keep that number constant, we compress the
number of hidden units (Sec. @), indicated by red dashed lines after each Uc gate. The compression is repeated at each layer
after the first, halving the number of hidden units each time.

Figure: Credit: Classical variational simulation of the Quantum Approximate
Optimization Algorithm. Medvidovic and Carleo.
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1. Each node in n nodes of the MAX-CUT graph corresponds to one

of n qubits in the quantum circuit.
Let’s use an n = 3 example in the figure.

Figure: G = (V(G),E(G)) = ({40,491, 42},{< q0q1 >, < qlq2 >})

Qg
1Y) = ag|000) + aq [001) ... + oy [111) = |1
oz
So now we have quantum amplitudes for each of the basis states.
n—1

Probability of measuring outcome z is | |. Z loz> =1 18740



2. The state vector across the qubits |1)) encodes a node partitioning

Figure: A max-cut corresponding to |¢) = |010).

» In our n = 3 running example, [¢) = |010), ap =1,
apg=a1 = a3 =g = a5 = ag = ay = 0, is a max-cut.
» The other max-cut is |¢)) = [101).
1 1
> A superposition = —[010) + — |101) would be an equal superposition
perp |¥) 7 010) 7 101) q perp

of the two max cuts.
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3. Put the initial state vector |¢;) in a superposition of all possible
node partitionings

o —E o
lO)Qicimic:%c
R e I e E e =
o~z T e H A
o @ L

FIG. 2: Framework for a QAOA circuit. Each qubit begins
with a Hadamard gate, and then 2p gates are performed alter-
nating between applying Hamiltonian C and applying Hamil-
tonian B.

Figure: Credit: How many qubits are needed for quantum computational supremacy.

Dalzell et al.
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3. Put the initial state vector |¢5) in a superposition of all possible
node partitionings

A superposition across all the bitstrings representing partitionings.
2"-1

ML

|s) = |+> = H®" |0
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3. Put the initial state vector |¢;) in a superposition of all possible
node partitionings

In our n = 3 running example:
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4. Need an operator (quantum gate) that encodes an edge
< jk >€ E(G)

» In the Max-Cut type of CSP, constraints correspond to edges
1
>C= ) Cage= ) 1-oed)
<jk>€E(G) <jk>€E(G)

» o7 is the Pauli-Z operator on qubit i

. |+1 0
> o= [ 0 -1
» Claim: ¢ that maximizes (1| C |¢) is the graph partition with the maximum

cut.
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4. Need an operator (quantum gate) that encodes an edge
< jk >€ E(G)

1
C= Y 5(1=0f ® o)

In our n = 3 running example: <jk>€E(G)
1 1
@ :E(l—a(z)@af)—i-i(l—af@ai)
1 1
ZEI—UZ®UZ®I)—|—§(I—I®UZ®UZ)
@ @ M 0 0 0 0 0 0 O
01 00O0O0O0O
00 2000O00O0
G = (V(G), E(G)) ~l0o0o010000
= ({90,41,42},{< q091 >, < q1q2 >} “ 00001000
00 0O0O0OZ200
00 0O0OO0OT1TDO0
000 00O 0 0]
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4. Need an operator (quantum gate) that encodes an edge
< jk >€ E(G)

Claim: ¢ that maximizes ()| C|¢) is the graph
partition with a maximum cut.

01'r0 0 0 0 000 0] 0]
0 01 00O0O0O0Of]O0
1 0020000 0] (|1
0 0 001O0O0O0O0f]0
(010[C 010} = 0 000O0O1O0O0O0]|O =2
Figure: A max-cut of |0 000020 0]]O0
corresponding to |¢) = [010). 0Of |0 000 0O0T1O0|]|0
o] [0 00000 0 o]0
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4. Need an operator (quantum gate) that encodes an edge
< jk >€ E(G)

> (010 C[010) =

SO OO - O
O OO OO NOO
D OO R O OO
[eNeNel e NeNo Nl
OO NODODOC OO
O R OO OO oo

N eleoll ]
SO OO O OO
O OO OO oo
O OO OOk O

0] [0 O 0 | 10]
» Note the size of state vector |¢)) is 2".
» Size of constraint matrix C is 2" x 2",

» We wouldn’t want to construct C explicitly, but it can be created efficiently
using gates and tensor products.

» We will enlist a quantum computer to create |¢)) and C.
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5. Provide classical parameters such that the classical computer can
control quantum partitioning

O —E—T - e S
lO)Qicim Q%Q
v SHE- 3 HE
o —EH HT T H T A
) - = = A

FIG. 2: Framework for a QAOA circuit. Each qubit begins
with a Hadamard gate, and then 2p gates are performed alter-
nating between applying Hamiltonian C and applying Hamil-
tonian B.

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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5. Provide classical parameters such that the classical computer can
control quantum partitioning

» A parameter p that controls how many iterations of algorithm and how
complete of a graph to see.

Do optimization across 2p-dimensional vector of 7 and 3 parameters

-,

(,77/8) = (717513 ""Ypaﬁp)
v € 10,27]
/Bi € [Oaﬂ-]
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6. Perform a series of operations parameterized by classical

parameters ¥ and 3 such that the final state vector [)(7, §)) is a
superposition of good partitionings

O T e o e
lO)Q_C:_m_c:—c
0 S HE e S E HA
0T 1 e o HA
o —{E-L e L A

FIG. 2: Framework for a QAOA circuit. Each qubit begins
with a Hadamard gate, and then 2p gates are performed alter-
nating between applying Hamiltonian C and applying Hamil-
tonian B.

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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6. Perform a series of operations parameterized by classical

parameters ¥ and 3 such that the final state vector [)(7, §)) is a
superposition of good partitionings

U(C,~), U(B, ) are 2" x 2" linear operators (Unitary matrices)

1. Problem Hamiltonian enforces constraints.
A product across all the graph edges.
u(c, r)/) — e_l’YC — H e_i'yc<jk>
<jk>€E(G)

2. Admixing Hamiltonian perturbs the assignments.
A product across all the qubits representing graph vertices.

U(B,B) =e B = H g8y
qeV(G)

30/40



6. Perform a series of operations parameterized by classical

parameters ¥ and 3 such that the final state vector [)(7, §)) is a
superposition of good partitionings

O T e o e
lO)Q_C:_m_c:—c
0 S HE e S E HA
0T 1 e o HA
o —{E-L e L A

FIG. 2: Framework for a QAOA circuit. Each qubit begins
with a Hadamard gate, and then 2p gates are performed alter-
nating between applying Hamiltonian C and applying Hamil-
tonian B.

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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6. Perform a series of operations parameterized by classical

parameters 7 and 3 such that the final state vector [)(7, 3)) is a
superposition of good partitionings

> Create ansatz states [¢(7, 3))

-,

> [4(7,8)) = U(B, B)U(C,p)...U(B, B1)U(C, ) |1hs) =

e
G

i=1 \qeV(G) <jk>€E
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7. Optimize for a good set of 7 and /3

» Measure this state to compute the objective function. That is, given the
current set of parameters 7 and 3, how much of the CSP is satisified

» Use a classical optimization algorithm such as Nelder-Mead to maximize

-, -, -,

Fp(7,8) = (0 (¥, B)| C (7, B))
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Evaluation of QAOA for NISQ: Number of iterations?

=,

» Let M, be the maximum of F, over the angles: M, = max F,(7, /3)
5,8

» QAOA needs a big parameter p to see the whole graph

> i =
Asp — oo, plggo M, max C(z)
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Evaluation of QAOA for NISQ: Number of iterations?

1.0
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FIG. 5.  QAOA performance as a function of depth, p. In
ideal simulation, increasing p increases the quality of the solu-
tion. For experimental Hardware Grid results, we observe in-
creased performance for p > 1 both as measured by the mean
over all 10 instances studied for each value of n € [11,23]
(lines) and statistics of which p value maximizes performance
on a per-instance basis (histogram). At larger p, errors over-
whelm the theoretical performance increase.

Figure: Credit: [Harrigan et al., 2021]
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Evaluation of QAOA for NISQ: Number of qubits?

300 akmaxsat Hueek
1day
g 250 < * QAOA (p=4)
2 = + QAOA (p=8) 1hour §
v
2 200 ]
T 150 $ ;
S o7 1min 2
g e g
émn B |~ = %
- = 1s _g
H 10 15 20 25 . 5
number of qubits . 2
14 S

1ms
0o 50 100 150 200 250 300 350 400
number of qubits or binary variables

Figure 2. Main panel: Computational cost of solving a single Max-Cut instance on random 3-regular graphs.
Blue markers correspond to the classical baseline (AKMAXSAT solver) while red and green marks correspond
to the experimental time required by the quantum algorithm QAOA, with p =4 and p = 8 respectively. The error
bars for the single data points are smaller than the markers (see Supplementary Information). Notice that in the
time needed by QAOA to partition graphs with 20 vertices, AKMAXSAT partitions graphs about 20 times
larger. The blue dashed line is the result of a fitting procedure with an exponential function. The red and green
areas are associated with a 95% confidence interval for the prediction of the QAOA cost based on a linear
regression of log, (T') as a function of the number of qubits (here T'is the computational time per instance). This
extrapolation should be seen as suggesting a qualitative behavior due to the uncertainty in the extrapolation
from relatively small system sizes. Insert panel: Magnification of QAOA datapoints. Notice that exponential
curves, and smooth curves in general, locally resemble straight lines and this makes it difficult to exclude other
functional forms for the extrapolation. It is, however, believed that even quantum computers will not be able to
solve NP-hard problems in polynomial time.

Figure: Credit: [Guerreschi and Matsuura, 2019]
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Evaluation of QAOA for NISQ: Number of constraints?

» Findings for MAX-CUT on connected 3-regular graphs [Farhi et al., 2014]

1. For p =1, QAOA will always produce a cut whose size is at least 0.6924 times
the size of the optimal cut.

2. This was the best known possible approximation for a few months until classical
algorithm found.

3. For p =2, the approximation ratio becomes 0.7559 and grows depending on the
type of graph.

» Difficulty of solving problems with higher constraint
ratios [Akshay et al., 2020]
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Evaluation of QAOA for NISQ: Optimization method?

» Optimization using gradients [Guerreschi and Smelyanskiy, 2017].

» Optimization using reinforcement learning [Khairy et al., 2020]
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Evaluation of QAOA for NISQ: Generalizations?

» Can be generalized to tackle weighted graphs [Willsch et al., 2020].
» Can be generalized to solve related problems [Hadfield et al., 2019].
» Factoring [Anschuetz et al., 2019].
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Read also

» Primary sources: [Farhi et al., 2014]
» Additional source: [Wang and Abdullah, 2018]
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