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Long-range class plan

Date Class topic Readings and assignments
10/20 NISQ algorithms: QAOA
10/25 NISQ algorithms: QAOA QAOA lab out
10/27 Quantum computing: systems view New reading assignment release

11/1 Languages: stabilizers
11/3 Languages: tensor networks
11/8 Languages: density matrices, noise QAOA lab part 1 due

11/10 Languages: logical abstractions
11/15 Quantum error correction codes
11/17 NISQ algorithms: quantum chemistry
11/22 NISQ algorithms: VQE QAOA lab all due, VQE lab out
11/29 Architecture

12/1 Microarchitecture
12/6 Devices: superconductors VQE lab part 1 due
12/8 Devices: ion traps

12/13 Conclusion
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Steps from NISQ toward FTQC

▶ Noisy Intermediate Scale Quantum vs. Fault
Tolerant Quantum Computation

▶ Credit: National Academies of Sciences,
Engineering, and Medicine. Quantum
Computing: Progress and Prospects. 2019.
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Applications of near-term and far-future quantum computing

Figure: Credit:
Maslov, Nam, and
Kim. An Outlook for
Quantum Computing.
Proceedings of the
IEEE. 2019.



5/40

Near-term intermediate-scale quantum (NISQ) computers

The limitations of near term quantum computers
▶ NISQ systems have limited number of qubits:

No error correction.
(In contrast, error corrected Shor’s would need a million qubits.)

▶ NISQ systems have limited coherence time:
Relative shallow depth of circuits.
(In contrast, error corrected Shor’s would need hundreds of millions of gates.)

▶ NISQ systems have limited operation accuracy



6/40

Table of contents

Long-range class plan

NISQ (Noisy Intermediate Scale Quantum) vs FTQC (Fault Tolerant Quantum
Computation)

NISQ algorithms: attributes, examples

Quantum Approximate Optimization Algorithm for MAX-CUT
The MAX-CUT problem
Encoding the vertices
Encoding the edges
A simulated annealing schedule

Evaluation of QAOA: depth, width, problem instance, optimization method,
generalizations



6/40

NISQ variational algorithms
Use a classical algorithm to train a "quantum neural network".

Figure:
Credit: [Guerreschi and Smelyanskiy, 2017]
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NISQ variational algorithms

Use a classical algorithm to train a "quantum neural network".
1. Quantum computer prepares a quantum state that is a function of classical

parameters.
2. Quantum computer measures quantum state to provide classical

observations.
3. Classical computer uses observations to calculate an objective function.
4. Classical computer uses optimization routine to propose new classical

parameters to maximize objective function.
5. Repeating steps 1 through 4, the algorithm leads to better approximations to

underlying problem.
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NISQ variational algorithms

Great! Can NISQ variational algorithms solve useful problems?
1. Variational quantum eigensolver (VQE):

Simulate quantum mechanics
2. Quantum approximate optimization algorithm (QAOA):

Approximate solutions to constraint satisfaction problems
(CSPs) [Farhi et al., 2014]
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Constraint satisfaction problem (CSP): MAX-CUT
▶ Given an arbitrary undirected graph

G = (V(G),E(G))
▶ goal of MAX-CUT is to assign one of two partitions to each node so as to

maximize the number of cuts

Figure: Credit: Quantum Algorithm Implementations for Beginners Coles.
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Constraint satisfaction problem (CSP): MAX-CUT

▶ Given an arbitrary undirected graph
G = (V(G),E(G))

▶ goal of MAX-CUT is to assign one of two partitions σi ∈ {−1,+1} to each
node i ∈ V(G) so as to maximize the number of cuts

▶ Identical form to the MAX-SAT problem with objective function C(σ⃗):
max
σ⃗

C(σ⃗) = max
σ⃗

∑
<jk>∈E(G)

C<jk>(σ⃗)

▶ But the constraints are now:

C<jk>(σ⃗) =
1
2
(1 − σjσk) =

{
1 if σj and σk are different
0 if σj and σk are the same
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QAOA for MAX-CUT: general strategy

1. Each node in n nodes of the MAX-CUT graph corresponds to one of n qubits
in the quantum circuit.

2. The state vector across the qubits |ψ⟩ encodes a node partitioning
σ⃗ ∈ {−1,+1}n

3. Put the initial state vector |ψs⟩ in a superposition of all possible node
partitionings

4. Need an operator (quantum gate) that encodes an edge < jk >∈ E(G)

5. Provide classical parameters such that the classical computer can control
quantum partitioning

6. Perform a series of operations parameterized by classical parameters γ⃗ and β⃗
such that the final state vector |ψ(γ⃗, β⃗)⟩ is a superposition of good
partitionings

7. Optimize for a good set of γ⃗ and β⃗
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QAOA for MAX-CUT: general strategy

Figure: Credit: Classical variational simulation of the Quantum Approximate
Optimization Algorithm. Medvidovic and Carleo.
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1. Each node in n nodes of the MAX-CUT graph corresponds to one
of n qubits in the quantum circuit.

Let’s use an n = 3 example in the figure.

q1

q0 q2

Figure: G = (V(G),E(G)) = ({q0, q1, q2}, {< q0q1 >,< q1q2 >})

|ψ⟩ = α0 |000⟩+ α1 |001⟩ ...+ α7 |111⟩ =


α0
α1
...
α7


So now we have quantum amplitudes for each of the basis states.

Probability of measuring outcome z is |αz|2.
n−1∑
z=0

|αz|2 = 1
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2. The state vector across the qubits |ψ⟩ encodes a node partitioning

q1

q0 q2|0⟩ |0⟩

|1⟩

Figure: A max-cut corresponding to |ψ⟩ = |010⟩.

▶ In our n = 3 running example, |ψ⟩ = |010⟩, α2 = 1,
α0 = α1 = α3 = α4 = α5 = α6 = α7 = 0, is a max-cut.

▶ The other max-cut is |ψ⟩ = |101⟩.

▶ A superposition |ψ⟩ = 1√
2
|010⟩+ 1√

2
|101⟩ would be an equal superposition

of the two max cuts.
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3. Put the initial state vector |ψs⟩ in a superposition of all possible
node partitionings

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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3. Put the initial state vector |ψs⟩ in a superposition of all possible
node partitionings

A superposition across all the bitstrings representing partitionings.

|ψs⟩ = |+⟩⊗n = H⊗n |0⟩⊗n =
1√
2n

2n−1∑
z=0

|z⟩
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3. Put the initial state vector |ψs⟩ in a superposition of all possible
node partitionings

In our n = 3 running example:

|+⟩⊗n = H⊗3 |0⟩⊗3 =

[
+1√

2
+1√

2
+1√

2
−1√

2

]⊗3 [
1
0

]⊗3

=


+1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
+1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
+1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
−1√

2

[
+1√

2
+1√

2
+1√

2
−1√

2

]
⊗

[
+1√

2
+1√

2
+1√

2
−1√

2

] [
1
0

]⊗3

=
1√
8

7∑
z=0

|z⟩ = [
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
]†
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4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

▶ In the Max-Cut type of CSP, constraints correspond to edges

▶ C =
∑

<jk>∈E(G)

C<jk> =
∑

<jk>∈E(G)

1
2
(1 − σz

j ⊗ σz
k)

▶ σz
i is the Pauli-Z operator on qubit i

▶ σz =

[
+1 0
0 −1

]
▶ Claim: ψ that maximizes ⟨ψ|C |ψ⟩ is the graph partition with the maximum

cut.



24/40

4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

In our n = 3 running example:

q1

q0 q2

G = (V(G),E(G))

= ({q0, q1, q2}, {< q0q1 >,< q1q2 >}

C =
∑

<jk>∈E(G)

1
2
(1 − σz

j ⊗ σz
k)

=
1
2
(1 − σz

0 ⊗ σz
1) +

1
2
(1 − σz

1 ⊗ σz
2)

=
1
2
(I − σz ⊗ σz ⊗ I) +

1
2
(I − I ⊗ σz ⊗ σz)

=



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


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4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

q1

q0 q2|0⟩ |0⟩

|1⟩

Figure: A max-cut
corresponding to |ψ⟩ = |010⟩.

Claim: ψ that maximizes ⟨ψ|C |ψ⟩ is the graph
partition with a maximum cut.

⟨010|C |010⟩ =



0
0
1
0
0
0
0
0



† 

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0





0
0
1
0
0
0
0
0


= 2
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4. Need an operator (quantum gate) that encodes an edge
< jk >∈ E(G)

▶ ⟨010|C |010⟩ =



0
0
1
0
0
0
0
0



† 

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0





0
0
1
0
0
0
0
0


= 2

▶ Note the size of state vector |ψ⟩ is 2n.
▶ Size of constraint matrix C is 2n × 2n.
▶ We wouldn’t want to construct C explicitly, but it can be created efficiently

using gates and tensor products.
▶ We will enlist a quantum computer to create |ψ⟩ and C.
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5. Provide classical parameters such that the classical computer can
control quantum partitioning

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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5. Provide classical parameters such that the classical computer can
control quantum partitioning

▶ A parameter p that controls how many iterations of algorithm and how
complete of a graph to see.

▶ Do optimization across 2p-dimensional vector of γ⃗ and β⃗ parameters
▶ (γ⃗, β⃗) = (γ1, β1, ...γp, βp)

▶ γi ∈ [0, 2π]
▶ βi ∈ [0, π]
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6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

U(C, γ), U(B, β) are 2n × 2n linear operators (Unitary matrices)

1. Problem Hamiltonian enforces constraints.
A product across all the graph edges.
U(C, γ) = e−iγC =

∏
<jk>∈E(G)

e−iγC<jk>

2. Admixing Hamiltonian perturbs the assignments.
A product across all the qubits representing graph vertices.
U(B, β) = e−iβB =

∏
q∈V(G)

e−iβσx
q
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6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

Figure: Credit: How many qubits are needed for quantum computational supremacy.
Dalzell et al.
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6. Perform a series of operations parameterized by classical
parameters γ⃗ and β⃗ such that the final state vector |ψ(γ⃗, β⃗)⟩ is a
superposition of good partitionings

▶ Create ansatz states |ψ(γ⃗, β⃗)⟩
▶ |ψ(γ⃗, β⃗)⟩ = U(B, βp)U(C, γp)...U(B, β1)U(C, γ1) |ψs⟩ =

p∏
i=1

( ∏
q∈V(G)

e−iβiσ
x
q

∏
<jk>∈E(G)

e−iγiC<jk>

)
|+⟩⊗n
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7. Optimize for a good set of γ⃗ and β⃗

▶ Measure this state to compute the objective function. That is, given the
current set of parameters γ⃗ and β⃗, how much of the CSP is satisified

▶ Use a classical optimization algorithm such as Nelder-Mead to maximize
Fp(γ⃗, β⃗) = ⟨ψ(γ⃗, β⃗)|C |ψ(γ⃗, β⃗)⟩
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Evaluation of QAOA for NISQ: Number of iterations?

▶ Let Mp be the maximum of Fp over the angles: Mp = max
γ⃗,β⃗

Fp(γ⃗, β⃗)

▶ QAOA needs a big parameter p to see the whole graph

▶ As p → ∞, lim
p→∞

Mp = max
z

C(z)
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Evaluation of QAOA for NISQ: Number of iterations?

Figure: Credit: [Harrigan et al., 2021]
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Evaluation of QAOA for NISQ: Number of qubits?

Figure: Credit: [Guerreschi and Matsuura, 2019]
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Evaluation of QAOA for NISQ: Number of constraints?

▶ Findings for MAX-CUT on connected 3-regular graphs [Farhi et al., 2014]
1. For p = 1, QAOA will always produce a cut whose size is at least 0.6924 times

the size of the optimal cut.
2. This was the best known possible approximation for a few months until classical

algorithm found.
3. For p = 2, the approximation ratio becomes 0.7559 and grows depending on the

type of graph.

▶ Difficulty of solving problems with higher constraint
ratios [Akshay et al., 2020]
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Evaluation of QAOA for NISQ: Optimization method?

▶ Optimization using gradients [Guerreschi and Smelyanskiy, 2017].
▶ Optimization using reinforcement learning [Khairy et al., 2020]
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Evaluation of QAOA for NISQ: Generalizations?

▶ Can be generalized to tackle weighted graphs [Willsch et al., 2020].
▶ Can be generalized to solve related problems [Hadfield et al., 2019].
▶ Factoring [Anschuetz et al., 2019].
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Read also

▶ Primary sources: [Farhi et al., 2014]
▶ Additional source: [Wang and Abdullah, 2018]
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