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Long-range class plan

Date Class topic Readings and assignments
10/20 NISQ algorithms: QAOA
10/25 NISQ algorithms: QAOA QAOA lab out
10/27 Quantum computing: systems view New reading assignment release

11/1 Languages: stabilizers
11/3 Languages: tensor networks
11/8 Languages: density matrices, noise QAOA lab part 1 due

11/10 Languages: logical abstractions
11/15 Quantum error correction codes
11/17 NISQ algorithms: quantum chemistry
11/22 NISQ algorithms: VQE QAOA lab all due, VQE lab out
11/29 Architecture

12/1 Microarchitecture
12/6 Devices: superconductors VQE lab part 1 due
12/8 Devices: ion traps

12/13 Conclusion
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Representations for Quantum Computing

Different representations useful in different settings

1. Quantum circuits
2. Stabilizers
3. Tensor networks
4. Noisy density matrices and Kraus operator sums
5. Logical formulas
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What makes a quantum circuit difficult to simulate?

Stabilizers
▶ Simulation difficulty grows exponentially w.r.t. number of T gates
▶ A statement about parameters.

Tensor network contraction
▶ Simulation difficulty grows exponentially w.r.t. maximum treewidth.
▶ A statement about topology.
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Tensors

Rank-k generalizations of matrices

▶ Rank-0 tensor: a scalar
▶ Rank-1 tensor: a vector
▶ Rank-2 tensor: a matrix
▶ Rank-3 tensor: ...
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Rank-0 tensor: a scalar

▶ In quantum circuits, a single amplitude is a complex scalar and therefore a
rank-0 tensor.

▶ For example, a single qubit state is in general |ϕ⟩ = α |0⟩+ β |1⟩. α and β are
scalars.
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Rank-1 tensor: a vector

▶ In quantum circuits, a single qubit state is a complex vector and therefore a
rank-1 tensor.

▶ For example, a single qubit state is in general |ϕ⟩ = α |0⟩+ β |1⟩ =
[
α
β

]
, a

complex vector.
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Rank-2 tensor: a matrix

Rank-2 tensors appear as single-qubit gates in quantum circuits

▶ For example, the Hadamard gate has a unitary matrix of H =

[
1√
2

1√
2

1√
2

−1√
2

]
.

▶ We can view it as a tensor with two ranks, m0 and m1 like so:

m0 m1 w
|0⟩ |0⟩ 1√

2
|0⟩ |1⟩ 1√

2
|1⟩ |0⟩ 1√

2
|1⟩ |1⟩ −1√

2



9/23

Rank-2 tensor

Rank-2 tensors also appear as two-qubit states in quantum circuits

▶ For example, a two-qubit state is in general

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ =


α
β
γ
δ



▶ We can view it as a tensor with two ranks, q0 and q1 like so:

q0 q1 w
|0⟩ |0⟩ α
|0⟩ |1⟩ β
|1⟩ |0⟩ γ
|1⟩ |1⟩ δ
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Rank-4 tensor
Rank-4 tensors appear as two-qubit gates in quantum circuits

For example, the CNOT gate has a
unitary matrix of

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

We can view it as a tensor with four
ranks, q0m0, q0m1, q1m0, and q1m1:

q0m0 q0m1 q1m0 q1m1 w
|0⟩ |0⟩ |0⟩ |0⟩ 1
|0⟩ |0⟩ |0⟩ |1⟩ 0
|0⟩ |0⟩ |1⟩ |0⟩ 0
|0⟩ |0⟩ |1⟩ |1⟩ 1
|0⟩ |1⟩ |0⟩ |0⟩ 0
|0⟩ |1⟩ |0⟩ |1⟩ 0
|0⟩ |1⟩ |1⟩ |0⟩ 0
|0⟩ |1⟩ |1⟩ |1⟩ 0
|1⟩ |0⟩ |0⟩ |0⟩ 0
|1⟩ |0⟩ |0⟩ |1⟩ 0
|1⟩ |0⟩ |1⟩ |0⟩ 0
|1⟩ |0⟩ |1⟩ |1⟩ 0
|1⟩ |1⟩ |0⟩ |0⟩ 0
|1⟩ |1⟩ |0⟩ |1⟩ 1
|1⟩ |1⟩ |1⟩ |0⟩ 1
|1⟩ |1⟩ |1⟩ |1⟩ 0
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Tensor network contraction

▶ Tensor network contraction is one type of tensor-tensor multiplication.
▶ It is a generalized form of matrix multiplication.
▶ Merge two tensors into one. Absorb common edges. If the two tensors share a

common index, sum over all possible values of that index.



12/23

Tensor network contraction
For example, we can contract the tensor network for a Bell state circuit

Hadamard gate rank-2 tensor:
q0m0 q0m1 w

|0⟩ |0⟩ 1√
2

|0⟩ |1⟩ 1√
2

|1⟩ |0⟩ 1√
2

|1⟩ |1⟩ −1√
2

CNOT gate rank-4 tensor:
q0m1 q0m2 q1m1 q1m2 w

|0⟩ |0⟩ |0⟩ |0⟩ 1
|0⟩ |0⟩ |0⟩ |1⟩ 0
|0⟩ |0⟩ |1⟩ |0⟩ 0
|0⟩ |0⟩ |1⟩ |1⟩ 1
|0⟩ |1⟩ |0⟩ |0⟩ 0
|0⟩ |1⟩ |0⟩ |1⟩ 0
|0⟩ |1⟩ |1⟩ |0⟩ 0
|0⟩ |1⟩ |1⟩ |1⟩ 0
|1⟩ |0⟩ |0⟩ |0⟩ 0
|1⟩ |0⟩ |0⟩ |1⟩ 0
|1⟩ |0⟩ |1⟩ |0⟩ 0
|1⟩ |0⟩ |1⟩ |1⟩ 0
|1⟩ |1⟩ |0⟩ |0⟩ 0
|1⟩ |1⟩ |0⟩ |1⟩ 1
|1⟩ |1⟩ |1⟩ |0⟩ 1
|1⟩ |1⟩ |1⟩ |1⟩ 0
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Tensor network contraction
Contract tensors by summing over
q0m1:

q0m0 q0m2 q1m1 q1m2 w
|0⟩ |0⟩ |0⟩ |0⟩ 1√

2
|0⟩ |0⟩ |0⟩ |1⟩ 0
|0⟩ |0⟩ |1⟩ |0⟩ 0
|0⟩ |0⟩ |1⟩ |1⟩ 1√

2
|0⟩ |1⟩ |0⟩ |0⟩ 0
|0⟩ |1⟩ |0⟩ |1⟩ 1√

2
|0⟩ |1⟩ |1⟩ |0⟩ 1√

2
|0⟩ |1⟩ |1⟩ |1⟩ 0
|1⟩ |0⟩ |0⟩ |0⟩ 1√

2
|1⟩ |0⟩ |0⟩ |1⟩ 0
|1⟩ |0⟩ |1⟩ |0⟩ 0
|1⟩ |0⟩ |1⟩ |1⟩ 1√

2
|1⟩ |1⟩ |0⟩ |0⟩ 0
|1⟩ |1⟩ |0⟩ |1⟩ −1√

2
|1⟩ |1⟩ |1⟩ |0⟩ −1√

2
|1⟩ |1⟩ |1⟩ |1⟩ 0

Compare this with unitary matrix:

CNOT(H ⊗ I)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0 1√
2

0
0 1√

2
0 1√

2
1√
2

0 −1√
2

0
0 1√

2
0 −1√

2



=


1√
2

0 1√
2

0
0 1√

2
0 1√

2
0 1√

2
0 −1√

2
1√
2

0 −1√
2

0


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Tensor network contraction order

Contraction ordering says the order in which edges are contracted.

▶ To minimize computation and memory requirements, best to avoid forming
large intermediate tensors.

▶ Akin to the classic dynamic programming problem of optimal chain matrix
multiplication.
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Tensor network contraction order

Figure: Source: [Ding and Chong, 2020]

Figure: Source: [Ding and Chong, 2020]

Figure: Source: [Ding and Chong, 2020]
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Tensor network contraction order

Figure: Source:Cupjin Huang et al., Classical
Simulation of Quantum Supremacy Circuits,
2020. [Huang et al., 2020]

Cost of simulating the quantum
circuit is via tensor network contraction is
O(exp(treewidth)) [Markov and Shi, 2008]
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Unification of stabilizers and tensors

▶ If you feed a Clifford circuit to a tensor network contraction based simulator,
it will not see Clifford symmetry

▶ Need some way to enable Clifford simplification of tensor networks.
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Example: inverting a CNOT

What is this circuit: (H ⊗ H)CNOT0,1(H ⊗ H)?

(H ⊗ H)CNOT0,1(H ⊗ H)

=
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


= CNOT1,0

All gates here (H, CNOT) in Clifford gate set. Automatic simplification method?
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Splitting a CNOT into network of two rank-3 tensors

"Copy" rank-3
tensor

a b c w
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

"XOR" rank-3
tensor

c d e w
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Contract "Copy"
with "XOR":
▶ Sum over c.
▶ Gives the

CNOT rank-4
tensor.

a b d e w
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

[Biamonte and Bergholm, 2017], [Biamonte, 2019]
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Tensor simplification rules: Duality of Copy and XOR tensors.

Hadamard rank-2
tensor:

a b w
0 0 1√

2
0 1 1√

2
1 0 1√

2
1 1 −1√

2

"Copy" rank-3 tensor:
b c e w
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Contraction of H with
Copy summing over b:

a c e w
0 0 0 1√

2
0 0 1 0
0 1 0 0
0 1 1 1√

2
1 0 0 1√

2
1 0 1 0
1 1 0 0
1 1 1 −1√

2



21/23

Tensor simplification rules: Duality of Copy and XOR tensors.

Hadamard rank-2
tensor:

c d w
0 0 1√

2
0 1 1√

2
1 0 1√

2
1 1 −1√

2

Contraction of H with
Copy summing over b:

a c e w
0 0 0 1√

2
0 0 1 0
0 1 0 0
0 1 1 1√

2
1 0 0 1√

2
1 0 1 0
1 1 0 0
1 1 1 −1√

2

Contraction of H with
{contraction of H with
Copy summing over b}
summing over c:

a d e w
0 0 0 1

2
0 0 1 1

2
0 1 0 1

2
0 1 1 −1

2
1 0 0 1

2
1 0 1 −1

2
1 1 0 1

2
1 1 1 1

2
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Tensor simplification rules: Duality of Copy and XOR tensors.

Hadamard rank-2
tensor:

e f w
0 0 1√

2
0 1 1√

2
1 0 1√

2
1 1 −1√

2

Contraction of H with
{contraction of H with
Copy summing over b}
summing over c:

a d e w
0 0 0 1

2
0 0 1 1

2
0 1 0 1

2
0 1 1 −1

2
1 0 0 1

2
1 0 1 −1

2
1 1 0 1

2
1 1 1 1

2

Contraction of H with
{contraction of H with
{contraction of H with
Copy summing over b}
summing over c}
summing over e:

a d f w
0 0 0 1√

2
0 0 1 0
0 1 0 0
0 1 1 1√

2
1 0 0 0
1 0 1 1√

2
1 1 0 1√

2
1 1 1 0
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Automatic simplification of circuits

What is this circuit: (H ⊗ H)CNOT0,1(H ⊗ H)?
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