Tensor Networks

Yipeng Huang

Rutgers University
November 10, 2021

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Long-range class plan

Date	Class topic	Readings and assignments
$10 / 20$	NISQ algorithms: QAOA	
$10 / 25$	NISQ algorithms: QAOA	QAOA lab out
$10 / 27$	Quantum computing: systems view	New reading assignment release
$11 / 1$	Languages: stabilizers	
$11 / 3$	Languages: tensor networks	
$11 / 8$	Languages: density matrices, noise	QAOA lab part 1 due
$11 / 10$	Languages: logical abstractions	
$11 / 15$	Quantum error correction codes	
$11 / 17$	NISQ algorithms: quantum chemistry	
$11 / 22$	NISQ algorithms: VQE	QAOA lab all due, VQE lab out
$11 / 29$	Architecture	
$12 / 1$	Microarchitecture	VQE lab part 1 due
$12 / 6$	Devices: superconductors	
$12 / 8$	Devices: ion traps	
$12 / 13$	Conclusion	

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Representations for Quantum Computing

Different representations useful in different settings

1. Quantum circuits
2. Stabilizers
3. Tensor networks
4. Noisy density matrices and Kraus operator sums
5. Logical formulas

Table of contents

Long-range class plan
Representations for Quantum Computing What makes a quantum circuit difficult to simulate?

```
Tensor networks
    Tensors
    Tensor networks
    Tensor network contraction
    Tensor network contraction order
Unification of stabilizers and tensors
    Example: inverting a CNOT
    Splitting a CNOT into network of two rank-3 tensors
    Tensor simplification rules
    Automatic simplification of circuits
```


What makes a quantum circuit difficult to simulate?

Stabilizers

- Simulation difficulty grows exponentially w.r.t. number of T gates
- A statement about parameters.

Tensor network contraction

- Simulation difficulty grows exponentially w.r.t. maximum treewidth.
- A statement about topology.

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Tensors

Rank-k generalizations of matrices

- Rank-0 tensor: a scalar
- Rank-1 tensor: a vector
- Rank-2 tensor: a matrix
- Rank-3 tensor: ...

Rank-0 tensor: a scalar

- In quantum circuits, a single amplitude is a complex scalar and therefore a rank-0 tensor.
- For example, a single qubit state is in general $|\phi\rangle=\alpha|0\rangle+\beta|1\rangle . \alpha$ and β are scalars.

Rank-1 tensor: a vector

- In quantum circuits, a single qubit state is a complex vector and therefore a rank-1 tensor.
- For example, a single qubit state is in general $|\phi\rangle=\alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$, a complex vector.

Rank-2 tensor: a matrix

Rank-2 tensors appear as single-qubit gates in quantum circuits

- For example, the Hadamard gate has a unitary matrix of $H=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$.

- We can view it as a tensor with two ranks, $m 0$ and $m 1$ like so:	$\|0\rangle$	$\|1\rangle$	$\frac{1}{\sqrt{2}}$
	$\|1\rangle$	$\|0\rangle$	$\frac{1}{\sqrt{2}}$
	$\|1\rangle$	$\|1\rangle$	$\frac{1}{\sqrt{2}}$
$\frac{-1}{\sqrt{2}}$			

Rank-2 tensor

Rank-2 tensors also appear as two-qubit states in quantum circuits

- For example, a two-qubit state is in general

$$
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle=\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]
$$

q0	q 1	w
$\|0\rangle$	$\|0\rangle$	α
$\|0\rangle$	$\|1\rangle$	β
$\|1\rangle$	$\|0\rangle$	γ
$\|1\rangle$	$\|1\rangle$	δ

Rank-4 tensor

Rank- 4 tensors appear as two-qubit gates in quantum circuits
We can view it as a tensor with four ranks, $q 0 m 0, q 0 m 1, q 1 m 0$, and $q 1 m 1$:

q 0 m 0	q 0 m 1	q 1 m 0	q 1 m 1	w
$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	1
$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	1
$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	1
$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	1
$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	0

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Tensor network contraction

- Tensor network contraction is one type of tensor-tensor multiplication.
- It is a generalized form of matrix multiplication.
- Merge two tensors into one. Absorb common edges. If the two tensors share a common index, sum over all possible values of that index.

Tensor network contraction

For example, we can contract the tensor network for a Bell state circuit
CNOT gate rank-4 tensor:

q 0 m 1	q 0 m 2	q 1 m 1	q 1 m 2	w
$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	1
$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	1
$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	1
$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	1
$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	0

Tensor network contraction

Contract tensors by summing over q0m1:

q 0 m 0	q 0 m 2	q 1 m 1	q 1 m 2	w
$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\frac{1}{\sqrt{2}}$
$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\frac{1}{\sqrt{2}}$
$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\frac{1}{\sqrt{2}}$
$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\frac{1}{\sqrt{2}}$
$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	$\|0\rangle$	$\frac{1}{\sqrt{2}}$
$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	$\|1\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\frac{1}{\sqrt{2}}$
$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\|0\rangle$	0
$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\|1\rangle$	$\frac{-1}{\sqrt{2}}$
$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	$\|0\rangle$	$\frac{-1}{\sqrt{2}}$
$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	$\|1\rangle$	0

Compare this with unitary matrix:

CNOT $(H \otimes I)$
$=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}}\end{array}\right]$
$=\left[\begin{array}{cccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} & 0\end{array}\right]$

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Tensor network contraction order

Contraction ordering says the order in which edges are contracted.

- To minimize computation and memory requirements, best to avoid forming large intermediate tensors.
- Akin to the classic dynamic programming problem of optimal chain matrix multiplication.

Tensor network contraction order

Figure 9.4: Part of a generic tensor network, consisting of ten rank-4 tensors and four rank-1 tensors.

Figure: Source: [Ding and Chong, 2020]

Figure 9.5: First strategy of contraction that results in two rank-12 tensors and four rank-1 tensors. Then contracting the two rank- 12 tensors involves contracting 5 edges at once, by summing over 2^{5} terms.

Figure: Source: [Ding and Chong, 2020]

Figure 9.6: Second strategy of contraction that results in five rank-6 tensors and four rank-1 tensors. Then contracting the five rank- 6 tensors involves contracting from left to right 2 edges at a time, by summing over 2^{2} terms four times.

Tensor network contraction order

Figure 1: Tensor network contraction of a quantum circuit from the random circuit family [7], visualized as a binary contraction tree. Each node in the tree represents a step in the contraction. Larger, darker nodes indicate more expensive steps. The central stem dominates the overall contraction cost.

Figure: Source:Cupjin Huang et al., Classical Simulation of Quantum Supremacy Circuits, 2020. [Huang et al., 2020]

Cost of simulating the quantum circuit is via tensor network contraction is O(exp(treewidth)) [Markov and Shi, 2008]

Table of contents

Long－range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate？
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example：inverting a CNOT
Splitting a CNOT into network of two rank－3 tensors
Tensor simplification rules
Automatic simplification of circuits

Unification of stabilizers and tensors

- If you feed a Clifford circuit to a tensor network contraction based simulator, it will not see Clifford symmetry
- Need some way to enable Clifford simplification of tensor networks.

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction orcler
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Example: inverting a CNOT

What is this circuit: $(H \otimes H) \operatorname{CNOT}_{0,1}(H \otimes H)$?

$$
\begin{aligned}
& (H \otimes H) \mathrm{CNOT}_{0,1}(H \otimes H) \\
& =\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
& =\mathrm{CNOT}_{1,0}
\end{aligned}
$$

All gates here $(H, C N O T)$ in Clifford gate set. Automatic simplification method?

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction orcler
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Splitting a CNOT into network of two rank-3 tensors

"Copy" rank-3 tensor		"XOR" rank-3 tensor	
a b c	W	c d e	W
0000	1	000	1
$0 \quad 0$	0	000	0
$0 \quad 10$	0	$0 \quad 10$	0
$0 \begin{array}{lll}0 & 1 & 1\end{array}$	0	$0 \begin{array}{lll}0 & 1 & 1\end{array}$	1
100	0	100	0
$1 \begin{array}{lll}1 & 0 & 1\end{array}$	0	1001	1
110	0	110	1
$1 \begin{array}{lll}1 & 1\end{array}$	1	111	0

Contract "Copy" with "XOR":

- Sum over c.
- Gives the CNOT rank-4 tensor.

a	b	d	e	w
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

[Biamonte and Bergholm, 2017], [Biamonte, 2019]

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Tensor simplification rules: Duality of Copy and XOR tensors.

Hadamard rank-2tensor:		b c e w			
		0	0		1
a b	w	0	0	1	0
00	$\frac{1}{\sqrt{2}}$	0	1		0
01	$\frac{1}{\sqrt{2}}$	0	1	1	0
10	$\frac{1}{\sqrt{2}}$	1	0	0	0
11	$\frac{\sqrt{2}}{\frac{1}{2}}$	1	0	1	0
			1	1	1

Contraction of H with
"Copy" rank-3 tensor: Copy summing over b :

a	c	e	w
0	0	0	$\frac{1}{\sqrt{2}}$
0	0	1	0
0	1	0	0
0	1	1	$\frac{1}{\sqrt{2}}$
1	0	0	$\frac{1}{\sqrt{2}}$
1	0	1	0
1	1	0	0
1	1	1	$\frac{-1}{\sqrt{2}}$

Tensor simplification rules: Duality of Copy and XOR tensors.

Contraction of H with
Copy summing over b :

	nso			
	d			
	0			$\frac{1}{\sqrt{2}}$
	1			$\frac{1}{1}$
				1

Contraction of H with \{contraction of H with Copy summing over b\} summing over c:

a	d	e	w
0	0	0	$\frac{1}{2}$
0	0	1	$\frac{1}{2}$
0	1	0	$\frac{1}{2}$
0	1	1	$\frac{-1}{2}$
1	0	0	$\frac{1}{2}$
1	0	1	$\frac{-1}{2}$
1	1	0	$\frac{1}{2}$
1	1	1	$\frac{1}{2}$

Tensor simplification rules: Duality of Copy and XOR tensors.

Contraction of H with \{contraction of H with Copy summing over b \} summing over c:

a	d	e	w
0	0	0	$\frac{1}{2}$
0	0	1	$\frac{1}{2}$
0	1	0	$\frac{1}{2}$
0	1	1	$\frac{-1}{2}$
1	0	0	$\frac{1}{2}$
1	0	1	$\frac{-1}{2}$
1	1	0	$\frac{1}{2}$
1	1	1	$\frac{1}{2}$

Contraction of H with \{contraction of H with \{contraction of H with Copy summing over b \} summing over c\} summing over e:

a	d	f	w
0	0	0	$\frac{1}{\sqrt{2}}$
0	0	1	0
0	1	0	0
0	1	1	$\frac{1}{\sqrt{2}}$
1	0	0	0
1	0	1	$\frac{1}{\sqrt{2}}$
1	1	0	$\frac{1}{\sqrt{2}}$
1	1	1	0

Table of contents

Long-range class plan
Representations for Quantum Computing
What makes a quantum circuit difficult to simulate?
Tensor networks
Tensors
Tensor networks
Tensor network contraction
Tensor network contraction order
Unification of stabilizers and tensors
Example: inverting a CNOT
Splitting a CNOT into network of two rank-3 tensors
Tensor simplification rules
Automatic simplification of circuits

Automatic simplification of circuits

What is this circuit: $(H \otimes H) \operatorname{CNOT}_{0,1}(H \otimes H)$?

Biamonte, J. (2019).
Lectures on quantum tensor networks.
arXio preprint arXiv:1912.10049.
國 Biamonte, J. and Bergholm, V. (2017).
Tensor networks in a nutshell.
arXiv preprint arXiv:1708.00006.Ding, Y. and Chong, F. (2020).
Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum Computers.
Synthesis Lectures on Computer Architecture. Morgan \& Claypool Publishers.
Huang, C., Zhang, F., Newman, M., Cai, J., Gao, X., Tian, Z., Wu, J., Xu, H., Yu, H., Yuan, B., et al. (2020). Classical simulation of quantum supremacy circuits.
arXio preprint arXiv:2005.06787.
囯 Markov, I. L. and Shi, Y. (2008).
Simulating quantum computation by contracting tensor networks.
SIAM Journal on Computing, 38(3):963-981.

