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What this talk is about:

Using classical probabilistic inference techniques as an abstraction for quantum computing.
• A new way to represent noisy quantum circuits as probabilistic graphical models.
• A new way to encode quantum circuits as conjunctive normal forms and arithmetic circuits.
• A new way to manipulate quantum circuits using logical equation satisfiability solvers.
• Improved simulation and sampling performance for important near-term quantum algorithms.
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Where we are going:

What are quantum variational algorithms?
• Why are they different and important?

What is quantum circuit simulation?
• Why are the conventional techniques insufficient?

How do we represent quantum circuits as logic formulas?
• Why does it help with variational algorithm simulation, and by how much?
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Limitations of near-term quantum computers

• Limited number of qubits (the fundamental information units and 
devices in quantum computing).

• Noisy, unreliable operations.
• Limited operations on each qubit.
• Error correction too costly (needs ~million qubits), not available.
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NISQ systems target variational algorithms.

Near-term Intermediate Scale Quantum (NISQ) systems have 
~100 qubits with at best 0.1% error rate.

With that capacity and reliability, error correction, along with 
famous algorithms such as Grover’s search and Shor’s factoring 
are infeasible.

The soonest candidates for useful quantum computation involve 
quantum-classical variational algorithms.
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Hybrid quantum-classical variational algos

Image source: Peruzzo et al., 2013 

Use quantum & classical computation

Quantum evaluates an 
objective function

Classical optimizes for 
better parameters

It’s like using a 
classical computer 
to train a quantum 
neural network.



Unique traits of variational algorithms

Provides meaningful results with noise even without error correction.

Draws on strengths of quantum and classical:
• Repeatedly prepare and measure quantum states.
• Optimize for a set of optimal parameters based on classical measurements.

Wide but shallow circuits (not many operations on many qubits).
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Specific examples of variational algorithms

Variational quantum eigensolver (VQE)
Simulate quantum mechanics.

Quantum approximate optimization algorithm (QAOA)
Approximate solutions to constraint satisfaction problems (CSPs).
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The unique challenge of simulating noisy 
variational algorithms

Image source: Peruzzo et al., 2013 

1. Needs to 
simulate noise 
(independent 
and 
correlated)

2. Require repeated simulation with different parameters

3. Only need 
samples, not full 
wavefunctions.



Rock, paper, scissors: Existing simulation techniques
are not suited for variational algorithms

Schrödinger simulation Feynman simulation Binary decision 
diagram simulation

QuEST, IBM, Google; 
parallel matrix vector 

multiplication

qTorch; graphical 
model tensor network 

contraction

QUIDD, Viamontes, 
Zulehner, Wille et al.

1. Does it excel at 
simulating wide but 
shallow circuits? ✗ ✓ ?
2. Does it extract 
structure for repeated 
simulation with different 
parameters?

✗ ? ✓
3. Does it efficiently 
sample from the final 
wavefunction? ✓ ✗ ?
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Our toolchain: Bayesian network knowledge compilation for 
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network

2. Bayesian networks to conjunctive normal form (CNF)

3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction
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Bayesian networks: AI models that encode 
probabilistic knowledge in a factorized format

Image source: Wikimedia



Noisy quantum circuits to Bayesian network

Control q0m2 Target q1m0 P( q1m3= ⟩|0 ) P( q1m3= ⟩|1 )
⟩|0 ⟩|0 1. 0.
⟩|0 ⟩|1 0. 1.
⟩|1 ⟩|0 0. 1.
⟩|1 ⟩|1 1. 0.

q0m0 P( q0m1= ⟩|0 ) P( q0m1= ⟩|1 )
⟩|0 ⁄+1 2 ⁄+1 2
⟩|1 ⁄+1 2 ⁄−1 2
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Connection between quantum circuits and 
probabilistic graphical models

Quantum / probabilistic:
Separated by Gottesman-Knill theorem, ideas can cross-pollinate
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Our toolchain: Bayesian network knowledge compilation for 
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network

2. Bayesian networks to conjunctive normal form (CNF)

3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction
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Bayesian networks to conjunctive normal form (CNF)
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Think about circuit as logic equation

Compile & minimize this logic equation

Variable assignments that satisfy CNF are 
valid Feynman paths through algorithm
• Model count on variable assignments 

yields quantum circuit simulation
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Qubits take on binary values:

q0m0=|0> XOR q0m0=|1>
q0m1=|0> XOR q0m1=|1>
q0m2=|0> XOR q0m2=|1>

q1m0=|0> XOR q1m0=|1>
q1m3=|0> XOR q1m3=|1>
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The Hadamard gate:

q0m0=|0> AND q0m1=|0> -> +1/sqrt(2)
q0m0=|0> AND q0m1=|1> -> +1/sqrt(2)
q0m0=|1> AND q0m1=|0> -> +1/sqrt(2)
q0m0=|1> AND q0m1=|1> -> -1/sqrt(2)

Bayesian networks to conjunctive normal form (CNF)

q0m0 P( q0m1= ⟩|0 ) P( q0m1= ⟩|1 )
⟩|0 ⁄+1 2 ⁄+1 2
⟩|1 ⁄+1 2 ⁄−1 2
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The CNOT gate:

q0m2=|0> AND q1m0=|0> -> q1m3=|0>
q0m2=|0> AND q1m0=|1> -> q1m3=|1>
q0m2=|1> AND q1m0=|0> -> q1m3=|1>
q0m2=|1> AND q1m0=|1> -> q1m3=|0>

Bayesian networks to conjunctive normal form (CNF)

Control q0m2 Target q1m0 P( q1m3= ⟩|0 ) P( q1m3= ⟩|1 )
⟩|0 ⟩|0 1. 0.
⟩|0 ⟩|1 0. 1.
⟩|1 ⟩|0 0. 1.
⟩|1 ⟩|1 1. 0.
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Put all the sentences together!

Convert logical implications "→" to 
logical disjunctions

Conjoin all the disjunctive clauses
together to form CNF
(i.e., AND all the ORs together)
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Bayesian networks to conjunctive normal form (CNF)



Our toolchain: Bayesian network knowledge compilation for 
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network

2. Bayesian networks to conjunctive normal form (CNF)

3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction
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CNF to arithmetic circuit (AC)
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• Quantum simulation becomes tree traversal on AC

38

Exact inference on AC for quantum circuit simulation
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• Quantum simulation becomes tree traversal on AC
• Quantum measurement outcomes are probabilistic evidence
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• Quantum simulation becomes tree traversal on AC
• Quantum measurement outcomes are probabilistic evidence
• Amplitude for given outcome comes from root node

40

Exact inference on AC for quantum circuit simulation
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Our toolchain: Bayesian network knowledge compilation for 
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network
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Gibbs sampling on AC to sample from final wavefunction
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The unique challenge of simulating noisy 
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Result 1: It works!

With minimal modification, knowledge compilation exact 
inference can be repurposed for quantum simulation
• Can accurately simulate Pauli gates, CNOT, CZ, phase kickback, 

Toffoli, CHSH protocol, Deutsch-Jozsa, Bernstein-Vazirani, hidden 
shift, quantum Fourier transform, Shor’s, Grover’s…

• Passes Google Cirq’s suite of test harness for quantum simulators
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Result 2: Ideal circuit simulation
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Result 2: Noisy circuit simulation
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Where we have gone:

What are quantum variational algorithms?
• Why are they different and important?

What is quantum circuit simulation?
• Why are the conventional techniques insufficient?

How do we represent quantum circuits as logic formulas?
• Why does it help with variational algorithm simulation, and by how much?
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Broader research agenda:
new representations for quantum computing

Schrödinger: state vectors and density matrices

Heisenberg: stabilizer formalism

Feynman: tensor-network path sums

Binary decision diagrams (new?)

Logical satisfiability equations (this work; new?)
55



Broader research agenda:
new representations for quantum computing

Schrödinger: state vectors and density matrices

Heisenberg: stabilizer formalism

Feynman: tensor-network path sums

Binary decision diagrams (new?)

Logical satisfiability equations (this work; new?)
56

potential
synergies


