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What this talk is about:

Using classical probabilistic inference techniques as an abstraction for quantum computing.

* A new way to represent noisy quantum circuits as probabilistic graphical models.

* A new way to encode quantum circuits as conjunctive normal forms and arithmetic circuits.

* A new way to manipulate quantum circuits using logical equation satisfiability solvers.

* Improved simulation and sampling performance for important near-term quantum algorithms.
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Where we are going:

What are quantum variational algorithms?
 Why are they different and important?

What is quantum circuit simulation?
« Why are the conventional techniques insufficient?

How do we represent quantum circuits as logic formulas?
« Why does it help with variational algorithm simulation, and by how much?
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Limitations of near-term quantum computers

 Limited number of qubits (the fundamental information units and
devices in quantum computing).

* Noisy, unreliable operations.
* Limited operations on each qubit.
* Error correction too costly (needs ~million qubits), not available.
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NISQ systems target variational algorithms.

Near-term Intermediate Scale Quantum (NISQ) systems have
~100 qubits with at best 0.1% error rate.

With that capacity and reliability, error correction, along with
famous algorithms such as Grover’s search and Shor’s factoring
are infeasible.

The soonest candidates for useful quantum computation involve
quantum-classical variational algorithms.



Hybrid quantum-classical variational algos

Use quantum & classical computation

Algorithm2 . |{'s |ike using a
classical computer
to train a quantum
neural network.

quantum state preparation

Quantum evaluates an Classical optimizes for
objective function better parameters

Image source: Peruzzo et al., 2013



Unique traits of variational algorithms

Provides meaningful results with noise even without error correction.
Draws on strengths of quantum and classical:
» Repeatedly prepare and measure quantum states.

» Optimize for a set of optimal parameters based on classical measurements.

Wide but shallow circuits (not many operations on many qubits).



Specific examples of variational algorithms

Variational quantum eigensolver (VQE)
Simulate quantum mechanics.

Quantum approximate optimization algorithm (QAOA)
Approximate solutions to constraint satisfaction problems (CSPs).
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The unique challenge of simulating noisy
variational algorithms

QPU E CPU

- samples, not full
- wavefunctions.
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2. Require repeated simulation with different parameters

Image source: Peruzzo et al., 2013



Rock, paper, scissors: Existing simulation techniques
are not suited for variational algorithms

Schrodinger simulation

QuEST, IBM, Google;
parallel matrix vector
multiplication



Schrodinger quantum circuit simulation
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Rock, paper, scissors: Existing simulation techniques
are not suited for variational algorithms

Schrodinger simulation

QuEST, qSim, ...;
parallel matrix vector
multiplication

1. Does it excel at
simulating wide but X
shallow circuits?

2. Does it extract

structure for repeated

simulation with different X
parameters?

3. Does it efficiently

sample from the final \/

wavefunction?
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Our toolchain: Bayesian network knowledge compilation for
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network

2. Bayesian networks to conjunctive normal form (CNF)
3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction



Our toolchain: Bayesian network knowledge compilation for
noisy quantum circuit simulation and sampling

_ . _ 1. Needs to simulate
1. Noisy quantum circuits to Bayesian network noise

2. Bayesian networks to conjunctive normal form (CNF) 2. Repeated
simulation
with
different
parameters

3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

3. Only need
5. Gibbs sampling on AC to sample from final wavefunction samples,
not full
wavefunctions
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Bayesian networks: Al models that encode

probabilistic knowledge in a factorized format
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Noisy quantum circuits to Bayesian network
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Connection between quantum circuits and
probabilistic graphical models

Quantum Probabilistic
program simulation inference
qubits random variables
amplitudes probabilities

Key analogies operator unitary matrices conditional probability tables
superposition states probability distributions
entangled qubits dependent random variables
measurement sampling & conditioning
amplitudes are complex-valued probabilities between 0 and 1

Key distinctions squares of amplitudes sum to 1 probabilities sum to 1

interference (canceling of amplitudes) possible interference impossible

Quantum / probabilistic:
Separated by Gottesman-Knill theorem, ideas can cross-pollinate
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Our toolchain: Bayesian network knowledge compilation for
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network

2. Bayesian networks to conjunctive normal form (CNF)

3. CNF to arithmetic circuit (AC)
4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction
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Bayesian networks to conjunctive normal form (CNF)
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Think about circuit as logic equation
Compile & minimize this logic equation

Variable assignments that satisfy CNF are

valid Feynman paths through algorithm

* Model count on variable assignments
yields quantum circuit simulation



Bayesian networks to conjunctive normal form (CNF)

qomo qoml qom2

H GAD e Qubits take on binary values:
. qomo=|0> XOR goeme=|1>
o D goml=|@> XOR geml=|1>
N gom2=|@> XOR gem2=|1>

qlme=|0> XOR qlme=|1>
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Bayesian networks to conjunctive normal form (CNF)

qomo qoml qom2 i

H GAD e The Hadamard gate:
o qome=[6> AND goml=|0> -> +1/sqrt(2)
o <> qome=[6> AND goml=|1> -> +1/sqrt(2)

qomo=|1> AND g@ml=|0> -> +1/sqrt(2)
qomo=|1> AND g@ml=|1> -> -1/sqrt(2)

P(_gom1=[0) ) | P( qemi=|1) )

|0) +1//2 +1//2
|1) +1//2 —1//2
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Bayesian networks to conjunctive normal form (CNF)

qomo qoml qom2 .
H GAD e The CNOT gate:

gom2=|(0> AND qlm@=|0> -> gqlm3=|0>
) gom2=|0> AND qlm@=|1> -> glm3=|1>
LV gom2=|1> AND qlm@=|@> -> glm3=|1>
gom2=|1> AND qlm@=|1> -> glm3=|0>

qimo

Control g@m2 | Target qim@ | P( qim3=|0) ) | P( glm3=|1) )
1. 9.

|0) 10)

|0) |1) 0 1.
1) 10) 0. 1.
1) 1) 1 0.
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Bayesian networks to conjunctive normal form (CNF)
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Put all the sentences together!

Convert logical implications "—" to
logical disjunctions

Conjoin all the disjunctive clauses
together to form CNF
(i.,e., AND all the ORs together)
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CNF to arithmetic circuit (AC)

Before After

Random circuit sampling = Grover's ™ Shor's

(2]
()]
T 1.E+08
c O
E1E406 § B g
= i
2 1.E+04 ™
Figure 1: Equivalent knowledge GE’ 1.E+02
compilation representations of a 4- % 0 5000 10000 15000 20000 25000
<

qubit noisy QAOA quantum cir-
cuit. In this work we calculate
and sample amplitudes from arith-
metic circuits (ACs) representing
noisy quantum circuits. To the
left, direct compilation results in
ACs where qubit states ordered in
time increases from top to bottom.
Above, logical minimization, vari-
able reordering, and eliding internal
states reduces the size of the AC.
The equivalent reduced representa-
tion leads to more efficient simula-
tion and sampling.

Conjunctive normal form variables

Figure 6: Simulation resource requirements vs. quantum
circuit size for three quantum algorithms
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Our toolchain: Bayesian network knowledge compilation for
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network
2. Bayesian networks to conjunctive normal form (CNF)

3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction
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Exact inference on AC for quantum circuit simulation
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Exact inference on AC for quantum circuit simulation
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* Quantum simulation becomes tree traversal on AC
* Quantum measurement outcomes are probabilistic evidence
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Exact inference on AC for quantum circuit simulation
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* Quantum simulation becomes tree traversal on AC
« Quantum measurement outcomes are probabilistic evidence
 Amplitude for given outcome comes from root node
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Our toolchain: Bayesian network knowledge compilation for
noisy quantum circuit simulation and sampling

1. Noisy quantum circuits to Bayesian network

2. Bayesian networks to conjunctive normal form (CNF)
3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

5. Gibbs sampling on AC to sample from final wavefunction
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Gibbs sampling on AC to sample from final wavefunction
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Schrodinger quantum circuit simulation
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1.

The unique challenge of simulating noisy
variational algorithms

Algorithm 2
CPU
Needs to .
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shallow | | . .
| - wavefunctions.

2. Require repeated simulation with different parameters

Image source: Peruzzo et al., 2013



Our toolchain: Bayesian network knowledge compilation for
noisy quantum circuit simulation and sampling

_ . _ 1. Needs to simulate
1. Noisy quantum circuits to Bayesian network noise

2. Bayesian networks to conjunctive normal form (CNF) 2. Repeated
simulation
with
different
parameters

3. CNF to arithmetic circuit (AC)

4. Exact inference on AC for quantum circuit simulation

3. Only need
5. Gibbs sampling on AC to sample from final wavefunction samples,
not full
wavefunctions



Result 1: It works!

With minimal modification, knowledge compilation exact
inference can be repurposed for qgquantum simulation

« Can accurately simulate Pauli gates, CNOT, CZ, phase kickback,
Toffoli, CHSH protocol, Deutsch-Jozsa, Bernstein-Vazirani, hidden
shift, guantum Fourier transform, Shor’s, Grover’s...

« Passes Google Cirg’s suite of test harness for quantum simulators



Result 2: Ideal circuit simulation

QAOA simulation time vs. qubits (iterations=1)
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Result 2: Noisy circuit simulation

Noisy QAOA simulation time vs. qubits (iterations=1)
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Qubits, representing Max-Cut problem vertices
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What this talk was about:

Using classical probabilistic inference techniques as an abstraction for quantum computing.

* A new way to represent noisy quantum circuits as probabilistic graphical models.

* A new way to encode quantum circuits as conjunctive normal forms and arithmetic circuits.

* A new way to manipulate quantum circuits using logical equation satisfiability solvers.

* Improved simulation and sampling performance for important near-term quantum algorithms.
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Broader research agenda:
new representations for quantum computing

Schrodinger: state vectors and density matrices
Heisenberg: stabilizer formalism
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Binary decision diagrams (new?)

Logical satisfiability equations (this work; new?)
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