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Quantum chemistry

Catalysis
> Nz to NH3

» Haber-Bosch process: energy intensive.
» Nitrogen fixation via nitrogenase: room temperature, efficient.

» FeMoco: iron molybdenum cofactor, 60 electrons in 110 spin
orbitals. [McArdle et al., 2020].

Superconductors
» Hubbard model

Important, and hard. Why?
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Schrodinger equation

Dynamics: interchange of potential and kinetic energy
L d
> iho [0 (1) = H[p(t))

d —1
> S 10(0) = ZH ()

» Hamiltonian H describes dynamics, is a Hermitian matrix
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The Hamiltonian for a molecule

Hamiltonian: energy = kinetic energy + potential energy

Nuclei have kinetic energy
Electrons have kinetic energy

PE: Electrons are attracted to nuclei
PE: Nuclei repel each other

PE: Electrons repel each other

R; are nuclei positions
M; are nuclei masses

Z; are nuclei charges

VYVYVVY Ok b=

r; are electron positions

Units: hartree

» Above equation normalized to
electron mass and charge

2
» 1 hartree = -
mee?ag

» m, mass of electron
» e charge of electron

» gy Bohr radius

[McArdle et al., 2020, Cao et al., 2019,
O’Malley et al., 2016]
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Map of topics

Quantum chemistry in the age of quantum computing

2.1: Limitation of
classical computation

2.2: Classical
approximations

(2.2.1: Staticsj [2.2.2: Dynamics)

2.3: Quantum
Simulation

2.3.1: Staticsj 2.3.2: Dynamics

3.1: Complexity
classes

3.2: Electronic 3.3: Molecular
i | structure theory vibronics

Frac TUNisa
Computational complexity —— Algorithms S

Figure: [Cao et al., 2019] 526
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What problem to solve: statics vs. dynamics

» Compute the ground state energy (lowest eigenvalue of Hamiltonian) (a.k.a.
local Hamiltonian problem)

» Simulate the time dynamics of a quantum system.
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Schrodinger equation

Dynamics
. d
> ih [0 (1) = H[u(t)
d —1
> o) = 2 H ()

» Hamiltonian H describes dynamics, is a Hermitian matrix

Statics

» If H is constant for a time step, then the sqlution to the above PDE is:
[v(t)) = U(t) [4(0)), where U(t) = exp(—Ht)
> U(t) = exp(—LEt)
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Ground state energies / Hermitian spectral theorem

» Eigendecomposition of H: I/ \njé \/I
H =31 Ei|éi) (&

» If state |¢) is an eigenvector of H,

then H |¢) = E |¢) =3
> State |¢) = |¢) exp (—LEt) isa

solution to the Schrodinger

equation. Exponent is purely
imaginary. Only phase changes. n

» Finding the minimum eigenvalue a
large matrix is a fundamental
problem primitive. The pagerank =1
algorithm is also a lowest

eigenvalue approximation.
Figure: Credit: wikimedia.org
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Computing the ground state energy

a 10
) = Ground state (G)
= 8 5 + 1stexcited state (E1)
E 6 b 4 2nd excited state (E2)
% 4 = 3rd excited state (E3)
g 2
w
0
-2 T T T T T
50 100 150 200 250
. . Atomic separation (pm)
» The eigenstates and eigenvalues of
. . b L[] -
the Hamiltonian tell us a lot about o
molecule’s properties. s .
% .
3 °1 -
-0.5
50 100 150 200 250

Atomic separation (pm)

Figure: [Lanyon et al., 2010]
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Computing the ground state energy

» The eigenstates and eigenvalues of the Hamiltonian dictate almost all of a

molecule’s properties.
; . E
> Reaction rate: rate o< exp(—Agr)
» Determining E to within 1.6 x 1073 hartree ~ 43 meV will find reaction rate to
within one order of magnitude. This is called chemical accuracy.

» In most (temperature) conditions, ambient thermal energy not enough to
move molecule’s state from ground to first excited state.

» So, finding the ground state energy is an important fundamental problem.
[McArdle et al., 2020]
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Simplifications / mappings

—__ Classical Preparation

—
Real Space I
| Maolecular
\Eilmmﬂmﬂn Bnrn-DppenheInEr\
e Apprnxlnmtlnv

Compute Orbitals,
artree-Fock State

——

i'ﬂ'ilE in
Second Quantized
_Drbltal Basis

SEE——

./E;;yi-lﬂ;aev

*._ Transform

Apply
Parameterized
Unitary //

Entangle Ancilla
with Trotterized
Propacator




Born%)ppenhennerapproxhnaﬁon
Simplification: nuclei are three orders of

a 10
. . . . G
magnitude more massive than electron, ~ 0 e e )
so treat nuclei as fixed; electrons move R I 4 2nd excied state (E2)
é 4 = 3rd excited state (E3)
H= Z Z 2 =
IR; —r]l Ih—rjl g
ij>1 0
1. Electrons have kinetic energy T8 w0 w0 a0 20
. Atomic separation (pm)
2. PE: Electrons are attracted to nuclei ' '
b
.
3. PE: Electrons repel each other _os] . P
> R; are nuclei positions s .
> 0 .
» Z; are nuclei charges g .
& .
» r; are electron positions os|
(normalized to electron mass and charge) 0 T 20 20

Atomic separation (pm)

To vary positions of nuclei, perform new
calculation with new nuclei positions. Figure: [Lanyon et al., 2010]
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What will the state vector encode?

First quantization: real-space discretization
A2
i

Z; 1
H:_Z 2 ZIRi—lr]’|+Z|ri—7j|
i ij i,j>i

» Direct finite difference of space
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Molecular basis set / Hartree Fock.

0} STO-nG
= 6-31G

= cc-PVDZ

Orbitals in basis (H,)

o0

-

FIG. 4. The orbitals included in different basis sets for the
Hydrogen atom. The 15’ orbital is often written as 2s. The
plots show the radial probability distributions for the true
Hydrogenie orhitals, which the hasis orhitals approximate.

Figure: Credit: McArdle. Quantum
computational chemistry.

Energy

Figure: Credit: [Hempel et al., 2018]
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Molecular basis set / Hartree Fock.

(@ Ao MO AO

Unoccupied

X » In molecules with many orbitals and
Active =4 1s electrons, the orbitals classified as:
' l SIPEE | unoccupied, active space, or frozen.

)
»
)
i)

. .

» Active space: the subset of degrees
of freedom containing the essential
A4 Frozen quantum behavior

Figure: Credit: [Hempel et al., 2018]
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Molecular basis set / Hartree Fock.

=
= - ccPVDZ » Hydrogen atom consists of a single
o _ 1s orbital, so use STO-3G
£ . .
5 (Slater-type orbital-3 Gaussians)
basis set.
= » Uses three Gaussians with different

FIG. 4. The orbitals included in different basis sets for the parameters to apprOXImate Shape Of

Hydrogen atom. The 1s' orbital is often written as 2s. The 1S orbital.
plots show the radial probability distributions for the true
Hydrogenic orbitals, which the hasis orhitals approximate.

Figure: Credit: McArdle. Quantum
computational chemistry.
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Molecular basis set / Hartree Fock.

0 T T T T
——STO-3G
—6-31G
-0.2F —cc-pVDZ |4
<111
D04 e 1
2 FIERE]
=1 g . .
E £ » Hydrogen atom consists of a single
E >0 6 i ga 115 | :
& & 1s orbital, so use STO-3G
o -1.16
@ -08F B) S 1 (Slater-type orbital-3 Gaussians)
1 fstonic e (4 basis set.
» Uses three Gaussians with different
-1.2

03 ) s 2 25 parameters to approximate shape of
Interatomic distance (A) 1s orbital

FIG. 14. Comparing the ground state dissociation curves of
H; for a range of basis sets.

Figure: Credit: [McArdle et al., 2020]
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Write in second quantized orbital basis

First quantization: real-space discretization
a2

Zi 1
H:_Z 2 _Z|Ri_17’j| +Z\7i—7]’\
i ij ij>i

» (direct finite difference of space)

Second quantization: incorporates knowledge of orbital occupancy
1
H=H;+H; = thqa;,aq + 2 Z hpqrsa;a;f/aras
p7q Pv%”vs
> a;r, is the fermionic creation operator for fermionic mode (spin orbital) p

> a4, is the fermionic annihilation operator for fermionic mode (spin orbital) p
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Write in second quantized orbital basis

Second quantization: incorporates knowledge of orbital occupancy
1
H=H;+H; = thqa;aq + 5 Z hpqrsa;f,a;aras
P pagrss
> a;g is the fermionic creation operator for fermionic mode (spin orbital) p

> a4, is the fermionic annihilation operator for fermionic mode (spin orbital) p

Fermionic creation and annihilation operators

> {a;, u,;} = {ap,a;} = 0 Cannot simultaneously create or annihilate electrons
from two orbitals p and 4.

> {a,, a];} = 0;pq} Annihilates an electron in p and creates an electron in g if
orbitals p and g are different.

» {a,b} =ab+ ba
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Write in second quantized orbital basis

Second quantization: incorporates knowledge of orbital occupancy
1
H=H;+H; = thqa;aq + > Z hpqrsa;a;rlaras
p7q P,‘%”,S
> 4 is the fermionic creation operator for fermionic mode (spin orbital
P p p P

» a, is the fermionic annihilation operator for fermionic mode (spin orbital) p

Numerical coefficients regarding orbital geometry, nuclear/electron
attraction/repulsion can now be precomputed:

. v Z;
hpq =fd”@p(g) (_? - Z |Ri 71;1) @glo) (3

i

hpgrs = /dol doy Pp(e1)9 E’fﬁ}ﬁoi(f’l)@r(f’z) @
"’"l - T‘z\
1 7.7,
have = E Z J ®)

i#] |R’i - R'j|

Figure: Credit: [Romero et al., 2018]
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Quantum mechanics difficult to classically simulate

"The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.” —Paul Dirac

[Dirac, 1929]

» The main difficulty is the electron-electron repulsion terms that sum over
combinations of four orbitals.

» This belongs to algorithms in N-body simulation; e.g., Hartree-Fock
» Classical simulation would rely on approximations (electron mean field)

» Simulation using classical computers only possible for ~ 30 electrons
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Quantum computing for quantum chemistry

1. A molecule: has n electrons that
represent n electrons

2. Classical computer: uses O(k") bits
to represent n electrons

3. Quantum computer: uses O(n”)
qubits to represent n electrons

Explanation credit to Ken Brown, Duke,
2018

Figure: Credit: imgflip.com
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Quantum computing for quantum chemistry

I BeH; M‘ |
HeH, H; | #
o .-._. iron-sulfur, DPH2 protein - MRC2Z protein
2 4 6 100 1000

number of qubits required

Figure 7: Qubit resources needed for quantum chemistry. Qubit numbers up to ten are
based on existing experiments, whereas the resources for larger molecules are estimates.
From left to right: hydrogen molecule, lithium hydride, beryllium hydride, iron sulphor
(Fe-S) cluster in DPH2 complex of Pyrococcus Horikoshii (PDB entry code 3LZD), and
Fe-S clusters sequence in cytochrome B560 subunit of mitochondria (PDB entry code
3SFD).

Figure: Credit: Moll et al. Quantum optimization using variational algorithms on
near-term quantum devices.

25/26



Table of contents

Motivation for quantum chemistry

Ground state estimation

Simplification of problem representation
Quantum computing for quantum chemistry

Qubit representation of orbitals

26/26



Decision 4: Mapping to qubit Hamiltonian?

1. Jordan-Wigner
2. Bravyi-Kitaev
3. BKSF
4. Parity
5. ..
Each of m qubits represents m orbitals, |1) = occupied, |0) = unoccupied.
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