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Quantum chemistry

Catalysis

I N2 to NH3

I Haber-Bosch process: energy intensive.
I Nitrogen fixation via nitrogenase: room temperature, efficient.
I FeMoco: iron molybdenum cofactor, 60 electrons in 110 spin

orbitals. [McArdle et al., 2020].

Superconductors

I Hubbard model

Important, and hard. Why?
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Schrödinger equation

Dynamics: interchange of potential and kinetic energy

I i~
d
dt
j (t)i = H j (t)i

I
d
dt
j (t)i =

�i
~

H j (t)i
I Hamiltonian H describes dynamics, is a Hermitian matrix
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The Hamiltonian for a molecule

Hamiltonian: energy = kinetic energy + potential energy

H = �
X

i

�2
Ri

2Mi
�

X
i

�2
ri

2
�

X
i;j

Zi

jRi � rjj
+

X
i;j>i

ZiZj

jRi � Rjj
+

X
i;j>i

1
jri � rjj

1. Nuclei have kinetic energy
2. Electrons have kinetic energy
3. PE: Electrons are attracted to nuclei
4. PE: Nuclei repel each other
5. PE: Electrons repel each other

I Ri are nuclei positions
I Mi are nuclei masses
I Zi are nuclei charges
I ri are electron positions

Units: hartree
I Above equation normalized to

electron mass and charge

I 1 hartree = ~2

mee2a2
0

I me mass of electron
I e charge of electron
I a0 Bohr radius

[McArdle et al., 2020, Cao et al., 2019,
O’Malley et al., 2016]
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Map of topics

Figure: [Cao et al., 2019]
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What problem to solve: statics vs. dynamics

I Compute the ground state energy (lowest eigenvalue of Hamiltonian) (a.k.a.
local Hamiltonian problem)

I Simulate the time dynamics of a quantum system.
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Schrödinger equation

Dynamics

I i~
d
dt
j (t)i = H j (t)i

I
d
dt
j (t)i =

�i
~

H j (t)i
I Hamiltonian H describes dynamics, is a Hermitian matrix

Statics
I If H is constant for a time step, then the solution to the above PDE is:
j (t)i = U(t) j (0)i, where U(t) = exp(� i

~Ht)
I U(t) = exp(� i

~Et)
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Ground state energies / Hermitian spectral theorem

I Eigendecomposition of H:
H =

PN
i=1 Ei j�ii h�ij

I If state j�i is an eigenvector of H,
then H j�i = E j�i

I State j�i = j�i exp (� i
~Et) is a

solution to the Schrödinger
equation. Exponent is purely
imaginary. Only phase changes.

I Finding the minimum eigenvalue a
large matrix is a fundamental
problem primitive. The pagerank
algorithm is also a lowest
eigenvalue approximation.

Figure: Credit: wikimedia.org
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Computing the ground state energy

I The eigenstates and eigenvalues of
the Hamiltonian tell us a lot about
molecule’s properties.

Figure: [Lanyon et al., 2010]



10/26

Computing the ground state energy

I The eigenstates and eigenvalues of the Hamiltonian dictate almost all of a
molecule's properties.

I Reaction rate: rate/ exp(� � E
kBT )

I Determining E to within 1 :6 � 10� 3 hartree � 43 meV will �nd reaction rate to
within one order of magnitude. This is called chemical accuracy.

I In most (temperature) conditions, ambient thermal energy not enough to
move molecule's state from ground to �rst excited state.

I So, �nding the ground state energy is an important fundamental problem.

[McArdle et al., 2020]
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Simpli�cations / mappings

Figure: Credit: OMalley et al. Scalable Quantum Simulation of Molecular Energies
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Born-Oppenheimer approximation
Simpli�cation: nuclei are three orders of
magnitude more massive than electron,
so treat nuclei as �xed; electrons move.

H = �
X

i

� 2
r i

2
�

X

i;j

Z i

jRi � r j j
+

X

i;j> i

1
jr i � r j j

1. Electrons have kinetic energy

2. PE: Electrons are attracted to nuclei

3. PE: Electrons repel each other

I Ri are nuclei positions
I Z i are nuclei charges
I r i are electron positions

(normalized to electron mass and charge)
To vary positions of nuclei, perform new
calculation with new nuclei positions. Figure: [Lanyon et al., 2010]
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Simpli�cations / mappings

Figure: Credit: OMalley et al. Scalable Quantum Simulation of Molecular Energies
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What will the state vector encode?

First quantization: real-space discretization

H = �
X

i

� 2
r i

2
�

X

i;j

Z i

jRi � r j j
+

X

i;j> i

1
jr i � r j j

I Direct �nite difference of space
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Molecular basis set / Hartree Fock.

Figure: Credit: McArdle. Quantum
computational chemistry. Figure: Credit: [Hempel et al., 2018]
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Molecular basis set / Hartree Fock.

Figure: Credit: [Hempel et al., 2018]

I In molecules with many orbitals and
electrons, the orbitals classi�ed as:
unoccupied, active space, or frozen.

I Active space: the subset of degrees
of freedom containing the essential
quantum behavior
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Molecular basis set / Hartree Fock.

Figure: Credit: McArdle. Quantum
computational chemistry.

I Hydrogen atom consists of a single
1s orbital, so use STO-3G
(Slater-type orbital-3 Gaussians)
basis set.

I Uses three Gaussians with different
parameters to approximate shape of
1s orbital.
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Molecular basis set / Hartree Fock.

Figure: Credit: [McArdle et al., 2020]

I Hydrogen atom consists of a single
1s orbital, so use STO-3G
(Slater-type orbital-3 Gaussians)
basis set.

I Uses three Gaussians with different
parameters to approximate shape of
1s orbital.
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Write in second quantized orbital basis

First quantization: real-space discretization

H = �
X

i

� 2
r i

2
�

X

i;j

Z i

jRi � r j j
+

X

i;j> i

1
jr i � r j j

I (direct �nite difference of space)

Second quantization: incorporates knowledge of orbital occupancy

H = H1 + H2 =
X

p;q

hpqay
paq +

1
2

X

p;q;r;s

hpqrsay
pay

qaras

I ay
p is the fermionic creation operator for fermionic mode (spin orbital) p

I ap is the fermionic annihilation operator for fermionic mode (spin orbital) p
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Write in second quantized orbital basis

Second quantization: incorporates knowledge of orbital occupancy

H = H1 + H2 =
X

p;q

hpqay
paq +

1
2

X

p;q;r;s

hpqrsay
pay

qaras

I ay
p is the fermionic creation operator for fermionic mode (spin orbital) p

I ap is the fermionic annihilation operator for fermionic mode (spin orbital) p

Fermionic creation and annihilation operators

I f ay
p; ay

qg = f ap; aqg = 0 Cannot simultaneously create or annihilate electrons
from two orbitals p and q.

I f ap; ay
qg = � f pqg Annihilates an electron in p and creates an electron inq if

orbitals p and q are different.
I f a; bg = ab+ ba
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Write in second quantized orbital basis
Second quantization: incorporates knowledge of orbital occupancy

H = H1 + H2 =
X

p;q

hpqay
paq +

1
2

X

p;q;r;s

hpqrsay
pay

qaras

I ay
p is the fermionic creation operator for fermionic mode (spin orbital) p

I ap is the fermionic annihilation operator for fermionic mode (spin orbital) p

Numerical coef�cients regarding orbital geometry, nuclear/electron
attraction/repulsion can now be precomputed:

Figure: Credit: [Romero et al., 2018]

[O'Malley et al., 2016, Kandala et al., 2017]
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Quantum mechanics dif�cult to classically simulate

”The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
dif�culty is only that the exact application of these laws leads to equations much
too complicated to be soluble.” —Paul Dirac
[Dirac, 1929]

I The main dif�culty is the electron-electron repulsion terms that sum over
combinations of four orbitals.

I This belongs to algorithms in N-body simulation; e.g., Hartree-Fock
I Classical simulation would rely on approximations (electron mean �eld)
I Simulation using classical computers only possible for � 30 electrons
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Map of topics

Figure: [Cao et al., 2019]
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Quantum computing for quantum chemistry

1. A molecule: has n electrons that
represent n electrons

2. Classical computer: usesO(kn) bits
to represent n electrons

3. Quantum computer: uses O(np)
qubits to represent n electrons

Explanation credit to Ken Brown, Duke,
2018

Figure: Credit: img�ip.com
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Quantum computing for quantum chemistry

Figure: Credit: Moll et al. Quantum optimization using variational algorithms on
near-term quantum devices.
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Decision 4: Mapping to qubit Hamiltonian?

1. Jordan-Wigner
2. Bravyi-Kitaev
3. BKSF
4. Parity
5. ...

Each of m qubits represents m orbitals, j1i = occupied, j0i = unoccupied.
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