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Where we are in the semester

Full stack quantum computer engineering

1. Fundamentals: superposition and entanglement
2. Canonical algorithms: Shor’s factoring algorithm
3. NISQ Algorithms: QAOA & VQE
4. Google Cirq, IBM Qiskit
5. Programming languages, representations
6. Extracting success: quantum computer architecture
7. Prototypes: quantum computer microarchitecture
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From quantum programs to quantum computer operation

Figure: Credit: [Shi et al., 2020]

Quick summary of the steps so far

▶ Loop unrolling
▶ Module flattening
▶ Logical-level optimization

Yipeng Huang
H H = I
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Scheduling for maximum parallelism

Figure: Credit: [Alam et al., 2020]

Some types of gates commute, so we can move earlier or later.
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Parallelism constraints

1. Amount of parallelism available in the instruction stream
2. Achievable parallelism in the control microarchitecture (”each student gets

one coaxial input”)
3. Safe parallelism despite crosstalk due to spatiotemporal and spectral overlap
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From quantum programs to quantum computer operation

Figure: Credit: [Shi et al., 2020]

Next steps

▶ Qubit mapping
▶ Topological constraints resolving
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Qubit mapping

▶ Ion trap qubits: fully
connected topology

▶ Superconducting qubits:
arbitrary qubits cannot
directly interact; needs
chain of swap gates

Figure: Credit: [Córcoles et al., 2020]
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Topological constraints resolving

Figure: Credit: [Tannu and Qureshi, 2019]

Superconducting qubits: arbitrary qubits cannot directly interact; needs chain of
swap gates
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Topological constraints resolving

Figure: Credit: [Li et al., 2019]

Superconducting qubits: arbitrary qubits cannot directly interact; needs chain of
swap gates
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The SWAP gate decomposes to three CNOT gates

The SWAP gate is

SWAP0,1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



This unitary matrix realizes the
following transformation:

▶ |00⟩ → |00⟩
▶ |01⟩ → |10⟩
▶ |10⟩ → |01⟩
▶ |11⟩ → |11⟩
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The SWAP gate decomposes to three CNOT gates

The CNOT0,1 gate
The CNOT gate with the zeroth qubit as
control, first qubit as target is:

CNOT0,1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


This unitary matrix realizes the
following transformation:

▶ |00⟩ → |00⟩
▶ |01⟩ → |01⟩
▶ |10⟩ → |11⟩
▶ |11⟩ → |10⟩

The CNOT1,0 gate
The CNOT gate with the first qubit as
control, zeroth qubit as target is:

CNOT1,0 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


This unitary matrix realizes the
following transformation:

▶ |00⟩ → |00⟩
▶ |01⟩ → |11⟩
▶ |10⟩ → |10⟩
▶ |11⟩ → |01⟩
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The SWAP gate decomposes to three CNOT gates

CNOT0,1CNOT1,0CNOT0,1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = SWAP0,1



13/18

Topological constraints resolving

Figure: Credit: [Li et al., 2019]

Superconducting qubits: arbitrary qubits cannot directly interact; needs chain of
swap gates
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From quantum programs to quantum computer operation

Figure: Credit: [Shi et al., 2020]

Next steps

▶ Physical-gate decomposition
▶ Physical-level optimization
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Physical-gate decomposition

Figure: Credit: [Alexeev et al., 2020]

▶ Clifford + T ISA is sensible for an error-corrected machine
▶ But for NISQ machine, best two-qubit gate is dependent on native gate set
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Physical-gate decomposition

Figure: Credit: [Matsuura et al., 2019]
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Physical-gate decomposition

Figure: Credit: [Murali et al., 2019]

Two qubit gates remain dominant sources of errors.
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Primary sources

▶ [Ding and Chong, 2020, Chapters 4,6,7]
▶ [Córcoles et al., 2020, Section III.B]
▶ [National Academies of Sciences, Engineering, and Medicine, 2019, Chapter

6.5]
▶ [Martonosi and Roetteler, 2019, Chapter 6]
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