
1/41

Machine-level representation of programs: Bomblab,
addressing mode recap, arithmetic

Yipeng Huang

Rutgers University

March 22, 2022

2/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

3/41

Announcements
PA4 bomb lab
▶ PA4 bomb lab out and live. Due Tuesday, April 5.
▶ Due dates for rest of semester up to date on class syllabus.

https://yipenghuang.com/teaching/2022-spring/

Short quiz next week
Short quiz on assembly basics and control spanning Tuesday 3/29 to Thursday
3/31.

Class session plan

▶ Today, 3/22: Bomb lab demo, recap addressing modes, wrap up arithmetic.
▶ Thursday, 3/24: Control flow (conditionals, if, for, while, do loops) in

assembly. (Book chapter 3.6)
▶ Tuesday, 3/29: Function calls in assembly. (Book chapter 3.7)
▶ Thursday, 3/31: Arrays and data structures in assembly. (Book chapter 3.8)

https://yipenghuang.com/teaching/2022-spring/

4/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

5/41

Programming Assignment 4: Defusing a Binary Bomb

Goals
▶ Learning to learn to use important tools like GDB.
▶ Understand how high level programming constructs compile down to

assembly instructions.
▶ Practice reverse engineering and debugging.

Setup

▶ Programming assignment description PDF on Canvas.
▶ Web interface for obtaining bomb and seeing progress.
▶ Unpacking.

6/41

Unpacking and gathering information about your bomb
What comes in the package

▶ bomb.c: Skeleton source code
▶ bomb: The executable binary

objdump -t bomb > symbolTable.txt

▶ 000000000040143a g F .text 0000000000000022 explode_bomb

objdump -d bomb > bomb.s
Different phases correspond to different topics about assembly programming in
the CS211 lecture slides, in the CS:APP slides, and in the CS:APP book.
▶ phase_1
▶ phase_2
▶ explode_bomb

strings -t x bomb > strings.txt

7/41

Example phase_1 in example bomb from CS:APP website

0000000000400ee0 <phase_1>:
400ee0: 48 83 ec 08 sub $0x8,%rsp
400ee4: be 00 24 40 00 mov $0x402400,%esi
400ee9: e8 4a 04 00 00 callq 401338 <strings_not_equal>
400eee: 85 c0 test %eax,%eax
400ef0: 74 05 je 400ef7 <phase_1+0x17>
400ef2: e8 43 05 00 00 callq 40143a <explode_bomb>
400ef7: 48 83 c4 08 add $0x8,%rsp
400efb: c3 retq

Understanding what we’re seeing here

▶ Don’t let callq to explode_bomb at instruction address 400ef2 happen...
▶ so, must ensure je instruction does jump, so we want test instruction to set

ZF condition code to 0.
▶ so, must ensure callq to strings_not_equal() function returns 0.

8/41

Using GDB to carefully step through execution of the bomb program

gdb bomb

Finding help in GDB

▶ help: Menu of documentation.
▶ help layout: Useful tip to use either layout asm or layout regs for

this assignment.
▶ help aliases

▶ help running

▶ help data

▶ help stack

9/41

Using GDB to carefully step through execution of the bomb program

gdb bomb

Setting breakpoints and running / stepping through code

▶ break explode_bomb or b explode_bomb: Pause execution upon
entering explode_bomb function.

▶ break phase_1 or b phase_1: Pause execution upon entering phase_1
function.

▶ run mysolution.txt or r mysolution.txt: Run the code passing the
solution file.

▶ continue or c: Continue until the next breakpoint.
▶ nexti or ni: Step one instruction, but proceed through subroutine calls.
▶ stepi or si: Step one instruction exactly. Steps into functions / subroutine

calls.

10/41

Using GDB to carefully step through execution of the bomb program

gdb bomb

Printing and examining registers and memory addresses

▶ print /x $eax or p /x $eax: Print value of %eax register as hex.
▶ print /d $eax or p /d $eax: Print value of %eax register as decimal.
▶ x /s 0x402400: Examine memory address 0x402400 as a string.

11/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

12/41

Immediate, register, and memory

Immediate
Constant integer
values. Example:
2_address-
ing_modes.c
immediate()

Register
One of the registers
of appropriate size
for data type.
Example: 1_swap.c

Memory
Access to memory
at calculated
address. Example:
1_swap.c

Carnegie Mellon

26 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

movq	
 Operand	
 Combina�ons	

Cannot	
 do	
 memory-­‐memory	
 transfer	
 with	
 a	
 single	
 instruc�on	

movq

Imm	

Reg	

Mem	

Reg	

Mem	

Reg	

Mem	

Reg	

Source	
 Dest	
 C	
 Analog	

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest	

Figure: movq Operands. Image credit CS:APP

13/41

Addressing modes

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes
¢ Normal (R) Mem[Reg[R]]

! Register R specifies memory address
! Aha! Pointer dereferencing in C

movq (%rcx),%rax

¢ Displacement D(R) Mem[Reg[R]+D]
! Register R specifies start of memory region
! Constant displacement D specifies offset

movq 8(%rbp),%rdx

Figure: Addressing modes. Image credit CS:APP

Normal
Simple pointers.
Example: 2_ad-
dressing_modes.c
immediate()

Displacement
Array access with
constant index.
Example: 2_ad-
dressing_modes.c
displacement()

14/41

Addressing modes

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complete Memory Addressing Modes
¢ Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
! D: Constant “displacement” 1, 2, or 4 bytes
! Rb: Base register: Any of 16 integer registers
! Ri: Index register: Any, except for %rsp
! S: Scale: 1, 2, 4, or 8 (why these numbers?)

¢ Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Figure: Addressing modes. Image credit CS:APP

Indexed
Array access with
variable index.
Example: 2_ad-
dressing_modes.c
index()

15/41

Addressing modes

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Figure: Addressing modes. Image credit CS:APP

16/41

2_addressing_modes.c: Imm→Mem

C code

void immediate (long * ptr) {

*ptr = 0xFFFFFFFFFFFFFFFF;
}

Assembly code

immediate:
movq $-1, (%rdi)
ret

▶ $ indicates the immediate value;
corresponds to literals in C

▶ (%rdi) indicates memory location at
address stored in %rdi register

17/41

2_addressing_modes.c: Imm→Mem (with displacement)

C code

void displacement_l (long * ptr) {
ptr[1] = 0xFFFFFFFFFFFFFFFF;

}

Assembly code

displacement_l:
movq $-1, 8(%rdi)
ret

▶ 8(%rdi) indicates memory location
at address stored in %rdi register + 8

18/41

2_addressing_modes.c: Imm→Mem (with displacement)

function signature assembly code

void displacement_c (char * ptr); movb $-1, 1(%rdi)
void displacement_s (short * ptr); movw $-1, 2(%rdi)

void displacement_i (int * ptr); movl $-1, 4(%rdi)
void displacement_l (long * ptr); movq $-1, 8(%rdi)

19/41

2_addressing_modes.c: Imm→Mem (with index)

C code

void index_l (long * ptr, long index) {
ptr[index] = 0xFFFFFFFFFFFFFFFF;

}

Assembly code

index_l:
movq $-1, (%rdi,%rsi,8)
ret

▶ (%rdi,%rsi,8) indicates memory
location at address stored in %rdi
register + 8 × value stored in %rsi
register

20/41

2_addressing_modes.c: Imm→Mem (with index)

function signature assembly code

void index_c (char * ptr, long index); movb $-1, (%rdi,%rsi)
void index_s (short * ptr, long index); movw $-1, (%rdi,%rsi,2)

void index_i (int * ptr, long index); movl $-1, (%rdi,%rsi,4)
void index_l (long * ptr, long index); movq $-1, (%rdi,%rsi,8)

21/41

2_addressing_modes.c: Imm→Mem (with displacement and index)

C code

void displacement_and_index (long * ptr, long index) {
ptr[index+1] = 0xFFFFFFFFFFFFFFFF;

}

Assembly code

displacement_and_index:
movq $-1, 8(%rdi,%rsi,8)
ret

▶ 8(%rdi,%rsi,8) indicates memory
location at address stored in %rdi
register + 8 × value stored in %rsi
register + 8

22/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

23/41

3_leaq.s: Borrowing memory address calculation to efficiently
implement arithmetic

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Computation Instruction
¢ leaq Src, Dst
! Src is address mode expression
! Set Dst to address denoted by expression

¢ Uses
! Computing addresses without a memory reference

! E.g., translation of p = &x[i];
! Computing arithmetic expressions of the form x + k*y

! k = 1, 2, 4, or 8

¢ Example
long m12(long x)
{
return x*12;

}
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Figure: leaq for arithmetic. Image credit CS:APP

Example: 3_leaq.c

24/41

Load effective address

1 long * leaq (
2 long * ptr, long index
3) {
4 return &ptr[index+1];
5 }

1 long mulAdd (
2 long base, long index
3) {
4 return base+index*8+8;
5 }

Both C code functions above translate to
the assembly on the right.

leaq:
mulAdd:

leaq 8(%rdi,%rsi,8), %rax
ret

Explanation

▶ leaq src,dest takes the effective
address of the memory (index,
displacement) expression of src and
puts it in dest.

▶ leaq has shorter latency (takes
fewer CPU cycles) than imulq, so
GCC will use leaq whenever it can
to calculate expressions like
y + ax + b.

25/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

26/41

Sign extension due to unsigned and signed data types
Converting to a data type with more bits

1 unsigned short uc_to_us (
2 unsigned char input
3) {
4 return input;
5 }

1 signed short sc_to_ss (
2 signed char input
3) {
4 return input;
5 }

255 = 1111_11112

= 0000_0000_1111_11112

= 255

127 = 0111_11112

= 0000_0000_0111_11112

= 127

−128 = 1000_00002

= 1111_1111_1000_00002

= −128

27/41

Sign extension due to unsigned and signed data types
Converting to a data type with more bits

1 unsigned short uc_to_us (
2 unsigned char input
3) {
4 return input;
5 }

1 signed short sc_to_ss (
2 signed char input
3) {
4 return input;
5 }

function signature assembly code

unsigned short uc_to_us (unsigned char input); movzbl %dil, %eax
signed short uc_to_ss (unsigned char input); movzbl %dil, %eax
unsigned short sc_to_us (signed char input); movsbw %dil, %ax

signed short sc_to_ss (signed char input); movsbw %dil, %ax

▶ movz: zero extension in the MSBs
▶ movs: signed extension in the MSBs

28/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

29/41

Left shift operation

1 unsigned long sl_ul (
2 unsigned long in0,
3 unsigned long in1
4) {
5 return in0<<in1;
6 }

1 signed long sl_sl (
2 signed long in0,
3 signed long in1
4) {
5 return in0<<in1;
6 }

Both C code functions above translate to
the assembly on the right.

sl_ul:
sl_sl:

movq %rdi, %rax
movb %sil, %cl
salq %cl, %rax
ret

Explanation

▶ movq: in0 → %rdi → %rax
▶ movb: in1 → %sil → %cl
▶ salq src,dest:

(dest << src) → dest
▶ Why only use movb for in1?

30/41

Right shift operation

Right shift of unsigned types yields logical (zero-filled) right shift

1 unsigned long sr_ul (
2 unsigned long in0,
3 unsigned long in1
4) {
5 return in0>>in1;
6 }

sr_ul:
movq %rdi, %rax
movb %sil, %cl
shrq %cl, %rax
ret

Right shift of signed types yields arithmetic (sign-extended) right shift

1 signed long sr_sl (
2 signed long in0,
3 signed long in1
4) {
5 return in0>>in1;
6 }

sr_sl:
movq %rdi, %rax
movb %sil, %cl
sarq %cl, %rax
ret

31/41

Bitwise operations

Assembly instruction Instruction effect

notq dest ∼ dest → dest
andq src,dest src&dest → dest
orq src,dest src|dest → dest
xorq src,dest src ∧ dest → dest

32/41

Integer arithmetic operations

Assembly instruction Instruction effect

incq dest dest + 1 → dest
decq dest dest − 1 → dest
negq dest −dest → dest
addq src,dest src + dest → dest
subq src,dest src − dest → dest
imulq src,dest src × dest → dest

33/41

Table of contents
Announcements
Programming Assignment 4: Defusing a Binary Bomb

Unpacking your bomb
Using GDB

2_addressing_modes.s: Understanding source dest operands and memory
addressing modes
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
MOV instruction sign extension
Arithmetic instructions

Shift operations
Bitwise operations
Integer arithmetic operations

Comparisons and program control flow
What is control flow?
Condition codes
Comparison and set instructions

34/41

What is control flow?

Control flow is:
▶ Change in the sequential execution of instructions.
▶ Change in the steady incrementation of the program counter / instruction

pointer (%rip register).

Control primitives in assembly build up to enable C and Java control
statements:
▶ if-else statements
▶ do-while loops
▶ while loops
▶ for loops
▶ switch statements

35/41

Condition codes

Carnegie Mellon

12 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

CPU	

Assembly/Machine	
 Code	
 View	

Programmer-­‐Visible	
 State	

§  PC:	
 Program	
 counter	

§  Address	
 of	
 next	
 instruc�on	

§  Called	
 “RIP”	
 (x86-­‐64)	

§  Register	
 file	

§  Heavily	
 used	
 program	
 data	

§  Condi�on	
 codes	

§  Store	
 status	
 informa�on	
 about	
 most	

recent	
 arithme�c	
 or	
 logical	
 opera�on	

§  Used	
 for	
 condi�onal	
 branching	

PC	

Registers	

Memory	

Code	

Data	

Stack	

Addresses	

Data	

Instruc�ons	
 Condi�on	

Codes	

§ Memory	

§  Byte	
 addressable	
 array	

§  Code	
 and	
 user	
 data	

§  Stack	
 to	
 support	
 procedures	

Figure: Assembly language view of CPU and memory. Image credit CS:APP

36/41

Condition codes

Automatically set by most arithmetic instructions.

Applicable types Condition code Name Use

Signed and unsigned ZF Zero flag The most recent operation yielded
zero.

Unsigned types CF Carry flag The most recent operation generated
a carry out of the most significant bit.
Used to detect overflow for unsigned
operations

Signed types SF Sign flag The most recent operation yielded a
negative value.

Signed types OF Overflow flag The most recent operation yielded a
two’s complement positive or nega-
tive overflow.

Table: Condition codes important for control flow

37/41

Comparison instructions

cmpq source1, source2
Performs source2 − source1, and sets the condition codes without setting any
destination register.

38/41

Test for equality

1 short equal_sl (
2 long x,
3 long y
4) {
5 return x==y;
6 }

C code function above translates to the
assembly on the right.

equal_sl:
xorl %eax, %eax
cmpq %rsi, %rdi
sete %al
ret

Explanation

▶ xorl %eax, %eax: Zeros the
32-bit register %eax.

▶ cmpq %rsi, %rdi: Calculates
%rdi −%rsi (x − y), sets condition
codes without updating any
destination register.

▶ sete %al: Sets the 8-bit %al
subset of %eax if op yielded zero.

39/41

Test if unsigned x is below unsigned y

1 short below_ul (
2 unsigned long x,
3 unsigned long y
4) {
5 return x<y;
6 }

1 short nae_ul (
2 unsigned long x,
3 unsigned long y
4) {
5 return !(x>=y);
6 }

Both C code functions above translate to
the assembly on the right.

below_ul:
nae_ul:

xorl %eax, %eax
cmpq %rsi, %rdi
setb %al
ret

Explanation

▶ xorl %eax, %eax: Zeros %eax.
▶ cmpq %rsi, %rdi: Calculates

%rdi −%rsi (x − y), sets condition
codes without updating any
destination register.

▶ setb %al: Sets %al if CF flag set
indicating unsigned overflow.

40/41

Side review: De Morgan’s laws

▶ ¬A ∧ ¬B ⇐⇒ ¬(A ∨ B)
▶ (∼ A)&(∼ B) ⇐⇒ ∼ (A|B)

41/41

Set instructions
cmp source1, source2 performs source2 − source1, sets condition codes.

Applicable types Set instruction Logical condition Intutive condition

Signed and unsigned sete / setz ZF Equal / zero
Signed and unsigned setne / setnz ∼ ZF Not equal / not zero

Unsigned setb / setnae CF Below
Unsigned setbe / setna CF|ZF Below or equal
Unsigned seta / setnbe ∼ CF& ∼ ZF Above
Unsigned setnb / setae ∼ CF Above or equal

Signed sets SF Negative
Signed setns ∼ SF Nonegative

Signed setl / setnge SF ˆ OF Less than
Signed setle / setng (SF ˆ OF)|ZF Less than or equal
Signed setg / setnle ∼ (SF ˆ OF)& ∼ ZF Greater than
Signed setge / setnl ∼ (SF ˆ OF) Greater than or equal

Table: Set instructions

	Announcements
	Programming Assignment 4: Defusing a Binary Bomb
	Unpacking your bomb
	Using GDB

	2_addressing_modes.s: Understanding source dest operands and memory addressing modes
	3_leaq.s: Borrowing memory address calculation to efficiently implement arithmetic
	MOV instruction sign extension
	Arithmetic instructions
	Shift operations
	Bitwise operations
	Integer arithmetic operations

	Comparisons and program control flow
	What is control flow?
	Condition codes
	Comparison and set instructions

