
1/33

The memory hierarchy: Cache placement, replacement, and
write policies

Yipeng Huang

Rutgers University

April 12, 2022

2/33

Table of contents
Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

3/33

Announcements

Class session plan

▶ Today, Tuesday, 4/12: Cache placement, replacement, and write policies
(Book chapters 6.4).

▶ Thursday, 4/14: Cache-friendly code–loop interchange, cache blocking (Book
chapters 6.5 and 6.6), and cache oblivious algorithms.

4/33

Table of contents
Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

5/33

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

▶ Fully associative cache
▶ Direct-mapped cache
▶ N-way set-associative cache

Cache design options use m-bit
memory addresses differently

▶ t-bit tag
▶ s-bit set index
▶ b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP

6/33

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

m-bit memory address
split into:

▶ t-bit tag
▶ b-bit block offset

7/33

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

b-bit block offset
▶ here, b = 3
▶ The number of bytes

in a block is
B = 2b = 23 = 8

▶ A block is the
minimum number of
bytes that can be
cached

▶ Good for capturing
spatial locality, short
strides

8/33

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

t-bit tag

▶ here,
t = m − b = m − 3

▶ When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

9/33

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Full associativity

▶ Blocks can go into any
of E ways

▶ Here, E = 3
▶ Good for capturing

temporal locality:
cache hits can happen
even with intervening
reads and writes to
other tags.

10/33

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Capacity of cache

▶ Total capacity of fully
associative cache in
bytes: C = EB = E ∗ 2b

▶ Here,
C = E∗2b = 3∗23 = 24
bytes

11/33

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Strengths

▶ Blocks can go into any
of E-ways.

▶ Hit rate is only limited
by total capacity.

Weaknesses
▶ Searching across all

valid tags is
expensive.

▶ Figuring out which
block to evict on
read/write miss is
also expensive.

▶ Requires a lot of
combinational logic.

12/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

m-bit memory address
split into:

▶ t-bit tag
▶ s-bit set index
▶ b-bit block offset

13/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

b-bit block offset
▶ here, b = 3
▶ The number of bytes

in a block is
B = 2b = 23 = 8

▶ A block is the
minimum number of
bytes that can be
cached

▶ Good for capturing
spatial locality, short
strides

14/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

s-bit set index
▶ here, s = 2
▶ The number of sets in

cache is
S = 2s = 22 = 4

▶ A hash function that
limits exactly where a
block can go

▶ Good for further
increasing ability to
exploit spatial locality,
short strides

15/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

t-bit tag

▶ here,
t = m−s−b = m−2−3

▶ When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

16/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Full associativity

▶ In direct-mapped
cache, blocks can go
into only one of E = 1
way

17/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Capacity of cache

▶ Total capacity of fully
associative cache in
bytes:
C = SEB = 2s ∗ E ∗ 2b

▶ Here, C = 2s ∗ E ∗ 2b =
22 ∗ 1 ∗ 23 = 32 bytes

18/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

▶ Simple to implement.
▶ No need to search

across tags.

Weaknesses
▶ Can lead to surprising

thrashing of cache
with unfortunate
access patterns.

▶ Unexpected conflict
misses independent of
cache capacity.

19/33

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

▶ Blocks can go into any
of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

▶ Only need to search
across E tags. Avoids
costly searching
across all valid tags.

▶ Avoids conflict misses
due to unfortunate
access patterns.

20/33

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:
▶ C = 32KB L1 data cache

per core

▶ S = 64 = 26 sets/cache
(s = 6 bits)

▶ E = 8 = 23 ways/set

▶ B = 64 = 26 bytes/block
(b = 6 bits)

▶ C = S ∗ E ∗ B

▶ Assuming memory
addresses are m = 48,
then tag size
t = m − s − b =
48 − 6 − 6 = 36 bits.

21/33

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

22/33

Table of contents
Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

23/33

Cache hits

Memory access is serviced from cache

▶ Hit rate = Numberofhits
Numberofmemoryaccesses

▶ Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)

24/33

Cache misses: metrics

Memory access cannot be serviced from cache

▶ Miss rate = Numberofmisses
Numberofmemoryaccesses

▶ Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

▶ Average memory access time = hit time + miss rate × miss penalty

25/33

Cache misses: Classification

Compulsory misses

▶ First access to a block of memory will miss because cache is cold.

Conflict misses
▶ Multiple blocks map (hash) to the same cache set.
▶ Fully associative caches have no such conflict misses.

Capacity misses

▶ Occurs when the set of active cache blocks (working set) is larger than the
cache.

▶ Direct mapped caches have no such capacity misses.

26/33

Table of contents
Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

27/33

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

▶ The number of sets in
cache is
S = 2s = 22 = 4.

▶ A hash function that
limits exactly where a
block can go.

▶ In direct-mapped
cache, blocks can go
into only one of E = 1
way.

▶ No cache replacement
policy is needed.

28/33

Associative caches

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

▶ Blocks can go into any
of E ways

▶ Here, E = 3
▶ Good for capturing

temporal locality.
▶ If all

ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for
replacement?

29/33

Cache replacement policies for associative caches

FIFO: First-in, first-out
▶ Evict the cache line that was placed the longest ago.
▶ Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

▶ Evict the cache line that was last accessed longest ago.
▶ Needs a counter on each cache line, and/or a global counter (e.g., program

counter).

30/33

Table of contents
Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

31/33

Policies for writes from CPU to memory
How to deal with write-hit? How to deal with write-miss?

▶ Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

▶ No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

▶ Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

▶ Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:
▶ Simple: write-through + no-write-allocate.
▶ Complex: write-back + write-allocate.

32/33

Table of contents
Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

33/33

Multilevel cache hierarchies

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 0!

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 3!

…!

L3 unified cache!
(shared by all cores)!

Main memory!

Processor package!

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

▶ L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

▶ L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

▶ L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

	Announcements
	Cache placement policy (how to find data at address for read and write hit)
	Fully associative cache
	Direct-mapped cache
	Set-associative cache

	Cache performance metrics: hits, misses, evictions
	Cache hits
	Cache misses

	Cache replacement policy (how to find space for read and write miss)
	Direct-mapped cache need no cache replacement policy
	Associative caches need a cache replacement policy (e.g., FIFO, LRU)

	Policies for writes from CPU to memory
	Multilevel cache hierarchies

