The memory hierarchy: Cache placement, replacement, and
write policies
Yipeng Huang
Rutgers University

April 12,2022

1/33

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

2/33

Announcements

Class session plan

» Today, Tuesday, 4/12: Cache placement, replacement, and write policies
(Book chapters 6.4).

» Thursday, 4/14: Cache-friendly code-loop interchange, cache blocking (Book
chapters 6.5 and 6.6), and cache oblivious algorithms.

3/33

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

4/33

Cache placement policy (how to find data at address for read and
write hit)

tbits s bits bbits
Address: | [[]
i

Several designs for caches Ao o

Tag Setindex Block offset

» Fully associative cache
» Direct-mapped cache
> N-way set-associative cache

Cache design options use m-bit
memory addresses differently
> t-bit tag
» s-bit set index

» b-bit block offset Figure: Memory addresses. Image credit
CS:APP

5/33

Fully associative cache

Address of int:
valid? + match: assume yes = hit -
r t bits 100

Cees | GLREGLEG]| ,
i m-bit memory address
block offset split into:
Eways < | tag ||0|1|2|3|4|5|6|7|| p
> t-bit tag
= ||o|1|z|3|4|5|6|7|| > b-bit block offset
\

Figure: Fully associative cache. Image credit CS:APP

6/33

Fully associative cache

valid? + match: assume yes = hit

Address of int:

r t bits 100
1
[Cee] GLEGLEGT0)|
|
block offset
eways { [D] Ll
Cee] LLEEGLG]|
\

Figure: Fully associative cache. Image credit CS:APP

b-bit block offset

» here,b =3

» The number of bytes
in a block is
B=20=23=8

» A block is the
minimum number of
bytes that can be
cached

» Good for capturing
spatial locality, short
strides

7133

Fully associative cache

valid? + match: assume yes = hit

Address of int:

t bits 100

(|
1
Cees | GLREGLEG]|
|
eways < |1 o] LR [
[ee] GLREGLEG 0|
\

block offset

Figure: Fully associative cache. Image credit CS:APP

t-bit tag

» here,
t=m—-b=m-3

» When CPU wants to
read from or write to
memory, all £-bits in
tag need to match for
read /write hit.

8/33

Fully associative cache

Address of int:
valid? + match: assume yes = hit

100

- t bits
1
[ee | GLEGLEGT0|
|
block offset
eways { [D] LRG|
Cee] LRG|
\

Figure: Fully associative cache. Image credit CS:APP

Full associativity

>

>
>

Blocks can go into any
of E ways

Here, E=3

Good for capturing
temporal locality:
cache hits can happen
even with intervening
reads and writes to
other tags.

9/33

Fully associative cache

Address of int:
. . Chi
valid? + match: assume yes = hit RS 100

(] Capacity of cache
Cees | GLREGLEG]|
|

» Total capacity of fully
block offset associative cache in
[Cee] LECEGT| bytes: C — EB — E + 20

» Here,
Cee] CLEEL TS| C— Fxb — 3423 — 24

bytes

E ways <

\

Figure: Fully associative cache. Image credit CS:APP

10/33

Fully associative cache

Strengths

» Blocks can go into any
of E-ways.
Vald? + match: assume ves < hit Address of int: » Hit rate is only limited

) i thits 100 by total capacity.
EE|EnEnnandg|
|

— Weaknesses

Ces] CLEGLEL]| > Searching across all
valid tags is

[v] e ||0|1|2|3|4|5|6|7|| expensive.

- » Figuring out which
block to evict on
read /write miss is
also expensive.

E ways <

Figure: Fully associative cache. Image credit CS:APP

» Requires a lot of 11/33

Direct-mapped cache

.
[Ces JETEEETEED) e T oo Tw |
m-bit memory address
[[es Ilol1|2|3|4|5|6|7||—‘ﬁndset split into:
S=2ssets
[Cee] CEEELEE| > t-bit tag
] [||0|1|2|3|4|5|6|7|| » s-bit set index
\

» b-bit block offset
Figure: Direct-mapped cache. Image credit CS:APP

12/33

Direct-mapped cache

b-bit block offset

» here,b =3
(Add
V] [we ||0|1|2|3|4|5|6|7|| L > Thenumbgr of bytes
in a block is
[] [Cree] [o2[2[3]2]sT6]17] —t B—2b_03_g8
S=2s5sets X
[Ces] CEEELEGTL)| > A block is the
ol IoDRBORG || minimum number of
tag ol1|2|3|4]|5|6]|7
L= bytes that can be
cached

Figure: Direct-mapped cache. Image credit CS:APP .
» Good for capturing

spatial locality, short
strides

13/33

Direct-mapped cache

s-bit set index
» here,s =2
[e | |o|1|2|3|4|5|6|7|| L » The number of sets in
cache is
[v] [tee] [o]2[2]3]4]5]e]7] — S_2s_02_94
[Cee] LLELEET| > A hash function that
EeIDDEDnEE || limits exactly where a
\% ta ol1])2|3|4]|5]|6]|7
= block can go
» Good for further
increasing ability to
exploit spatial locality,
short strides

,

S=25sets

\

Figure: Direct-mapped cache. Image credit CS:APP

14/33

Direct-mapped cache

(Add t-bit ta
Coe) CLEGLGLED] e 5
» here,
(e | [o[2[3[4]5]¢]7] — b s h— m—23
S=255ets<
[Cioe] GLREGLE]| > When CPU wants to
read from or write to
| |& Lo CLEELEET|

memory, all £-bits in
tag need to match for

Figure: Direct-mapped cache. Image credit CS:APP read /write hit.

15/33

Direct-mapped cache

(Address
[Ces J CLEGETTT]
0] [ee ||o|1|z|s|4|s|e|v||—ﬁ‘ndset
S=2ssets
[Cee] CEEELEE|
B G | CLLEGLG |

Figure: Direct-mapped cache. Image credit CS:APP

Full associativity

» In direct-mapped
cache, blocks can go
into only one of E =1
way

16/33

Direct-mapped cache

(5 C= ||o|1]2|3|4|5|6]7|| S E— Capacity of cache
[V] [Cee ||o|1|z|3|4|5|6|7||—ﬁ‘ndset » Total capacity of fully
$ =25 sets associative cache in
[Cee] CEEELEE| bytes:
{olx==]ccesnan6g] C=SEB=2"xEx+2

> Here, C =2 E*2" =
Figure: Direct-mapped cache. Image credit CS:APP 22 %1% 2% = 32 bytes

17/33

Direct-mapped cache

-

Address
[Cee] LLEEEL|

] [||o|1]z|s|4|slel7ll—ﬁ‘ndset
[[) CLLLLGED)
[Cee] CEERLEE|

S=25sets

\

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

» Simple to implement.

» No need to search
across tags.

Weaknesses

» Can lead to surprising
thrashing of cache
with unfortunate
access patterns.

» Unexpected conflict
misses independent of
cache capacity.

18/33

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

1 valid bit ttag bits
per line per line

B =2bbytes
per cache block

[Vaiia] [Tag J[o[1] -~ [B1]
Vaiia] [Tag J[o[1] - [51]

[vaia] [7eg J[o 1] — [51]
[vaia] [Tag][0 [1] — [81]

[vaiia] [Tag J[o 1] - [B4]
Vaiia] [Tag J[0[] -~ [B]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

» Blocks can go into any

of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

Only need to search
across E tags. Avoids
costly searching
across all valid tags.

Avoids conflict misses
due to unfortunate
access patterns.

19/33

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

1 valid bit ttag bits
per line per line

B =2bbytes

per cache block

] [g (o [] (o
ere]) [7] (o [11~ [o1]
] [JLo [o
vere] [T][0 [+]~ [o1]
e [7os Lo [T o]
ere] [7) [0 [1] [51]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:

>

>

C = 32KB L1 data cache
per core

S = 64 = 2° sets/cache
(s = 6 bits)

> E=8=2%ways/set
> B = 64 = 2% bytes/block

(b = 6 bits)

> Assuming memory

addresses are m = 48,
then tag size
t=m-s—b=
48 — 6 — 6 =36 bits.

20/33

E-way set-associative cache

porine perine. Doliones
fie] [7o J[o [] - 1]
% | eta) [g J Lo [+ 1~ [o1]
o] [g Lo 11 o]
sezmst " |] [)0 [T ool
] [Jo [1= o
% ane] [1[0 (1] Jo1]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

21/33

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

22/33

Cache hits

Memory access is serviced from cache

. _ Numberofhits
> Hit rate = Numberofmemoryaccesses

» Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)

23/33

Cache misses: metrics

Memory access cannot be serviced from cache

: _ Numberofmisses
> Miss rate = Numberofmemoryaccesses

» Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

> Average memory access time = hit time + miss rate x miss penalty

24/33

Cache misses: Classification

Compulsory misses

» First access to a block of memory will miss because cache is cold.

Contflict misses
» Multiple blocks map (hash) to the same cache set.

» Fully associative caches have no such conflict misses.

Capacity misses

» Occurs when the set of active cache blocks (working set) is larger than the
cache.

» Direct mapped caches have no such capacity misses.

25/33

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

26/33

Direct-mapped cache

-

Address
[Coe] CLEERLEEL|

0] [||o|1|z|a|4|s|e|v||—ﬁ‘ndset

[Cee] CEEELEE|
B G | CLLEGLGLE|

S=2s sets<

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

» The number of sets in

cache is
S=25=22—-4
A hash function that

limits exactly where a
block can go.

In direct-mapped
cache, blocks can go
into only one of E =1
way.

No cache replacement
policy is needed.

27/33

Associative caches

E ways <

valid? + match: assume yes = hit

Address of int:

-

1
[ee] GLEGLEG0|
|

t bits 100

[ee] GLREGLEG 0|

Cee] LLEEGLL]|

\

block offset

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

>

>
>

>

Blocks can go into any
of E ways

Here, E =3

Good for capturing
temporal locality.

If all
ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for

replacement?
28/33

Cache replacement policies for associative caches

FIFO: First-in, first-out
» Evict the cache line that was placed the longest ago.

» Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

» Evict the cache line that was last accessed longest ago.

» Needs a counter on each cache line, and/or a global counter (e.g., program
counter).

29/33

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

30/33

Policies for writes from CPU to memory

How to deal with write-hit? How to deal with write-miss?
> Write-through. Simple. Writes update both » No-write-allocate. Simple. Write-misses do
cache and memory. Costly memory bus not load block into cache. But write-misses
traffic. are not mitigated via cache support.

> Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

> Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:

> Simple: write-through + no-write-allocate.

»> Complex: write-back + write-allocate.

31/33

Table of contents

Announcements

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

32/33

Multilevel cache hierarchies

Small fast caches nested inside large
Processor package slow caches

» L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

> L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

> L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

L3 unified cache
(shared by all cores)

’ Main memory ‘

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP Figure: Intel 2020 Gulftown die shot. Image
credir AnandTech 33/33

	Announcements
	Cache placement policy (how to find data at address for read and write hit)
	Fully associative cache
	Direct-mapped cache
	Set-associative cache

	Cache performance metrics: hits, misses, evictions
	Cache hits
	Cache misses

	Cache replacement policy (how to find space for read and write miss)
	Direct-mapped cache need no cache replacement policy
	Associative caches need a cache replacement policy (e.g., FIFO, LRU)

	Policies for writes from CPU to memory
	Multilevel cache hierarchies

