Basic quantum algorithms: Deutsch-Jozsa, Bernstein-Vazirani

Yipeng Huang

Rutgers University

October 10, 2022
Promise algorithms vs. unstructured search

Quantum algorithms offer exponential speedup in “promise” problems

A progression of related algorithms:

1. Deutsch’s
2. Deutsch-Jozsa
3. Bernstein-Vazirani
4. Simon’s
5. Shor’s
Table of contents

Deutsch’s algorithm: simplest quantum algorithm showing advantage vs. classical
 Problem description
 Circuit diagram and what is in the oracle
 Demonstration of Deutsch-Jozsa for the $n = 1$ case
 Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
 The state after applying oracle U
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

The classical part: converting factoring to order finding / period finding
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

A Heist

- You break into a bank vault. The bank vault has 2^n bars. Three possibilities: all are gold, half are gold and half are fake, or all are fake.
- Even if you steal just one gold bar, it is enough to fund your escape from the country, forever evading law enforcement.
- You do not want to risk stealing from a bank vault with only fake bars.
- You have access to an oracle $f(x)$ that tells you if gold bar x is real.
- Using the oracle sounds the alarm, so you only get to use it once.
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

More formal description

- The 2^n bars are either fake or gold. $f : \{0, 1\}^n \to \{0, 1\}$.
- Three possibilities:
 1. All are fake. f is constant. $f(x) = 0$ for all $x \in \{0, 1\}^n$.
 2. All are gold. f is constant. $f(x) = 1$ for all $x \in \{0, 1\}^n$.
 3. Half fake half gold. f is balanced.

$$\left| \{x \in \{0, 1\}^n : f(x) = 0\} \right| = \left| \{x \in \{0, 1\}^n : f(x) = 1\} \right| = 2^{n-1}$$

- The oracle U works as follows: $U \ket{c} \ket{t} = \ket{c} \ket{t \oplus f(c)}$
- Try deciding if f is constant or balanced using oracle U only once.
What is in the oracle

For $n = 1$, four possibilities

<table>
<thead>
<tr>
<th></th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$f(1)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>f is constant 0</td>
<td>f is balanced</td>
<td>f is balanced</td>
<td>f is constant 1</td>
</tr>
</tbody>
</table>
Demonstration of Deutsch-Jozsa for the $n = 1$ case

Output of circuit is $c = 0$ iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. After first set of Hadamards: $H \otimes H \left(|0\rangle \otimes |1\rangle \right) = H |0\rangle \otimes H |1\rangle = |+\rangle \otimes |-\rangle =

\[
\left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) \otimes \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}
\]

From here, let’s take an aside via matrix-vector multiplication to build intuition with interference and phase kickback.
Demonstration of Deutsch-Jozsa for the $n = 1$ case

Output of circuit is $c = 0$ iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. After first set of Hadamards: $H \otimes H \left(|0\rangle \otimes |1\rangle \right) = |+\rangle |-\rangle = \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) = \frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right)$

3. After applying oracle U:

 $U_\frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right) = \frac{1}{2} \left(|0\rangle (|f(0)\rangle + 0 - f(0) + 1\rangle) + |1\rangle (|f(1)\rangle + 0 - f(1) + 1\rangle) \right) = \frac{1}{2} \left(|0\rangle (|f(0)\rangle - |\bar{f}(0)\rangle) + |1\rangle (|f(1)\rangle - |\bar{f}(1)\rangle) \right)$
Demonstration of Deutsch-Jozsa for the $n = 1$ case

Output of circuit is $c = 0$ iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. After first set of Hadamards: $\frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right)$

3. After applying oracle U: $U \frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right) = \frac{1}{2} \left(|0\rangle (|f(0)\rangle - |\bar{f}(0)\rangle) + |1\rangle (|f(1)\rangle - |\bar{f}(1)\rangle) \right)$

4. This last expression can be factored depending on f:

$$U \frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right) = \begin{cases} \frac{1}{2} (|0\rangle + |1\rangle) (|f(0)\rangle - |\bar{f}(0)\rangle) & \text{if } f(0) = f(1) \\ \frac{1}{2} (|0\rangle - |1\rangle) (|f(0)\rangle - |\bar{f}(0)\rangle) & \text{if } f(0) \neq f(1) \end{cases} = \begin{cases} |+\rangle |-\rangle & \text{if } f(0) = f(1) \\ |\bar{-}\rangle |-\rangle & \text{if } f(0) \neq f(1) \end{cases}$$

The trick where oracle’s output on $|t\rangle$ affects phase of $|c\rangle$ is called phase kickback.
Demonstration of Deutsch-Jozsa for the $n = 1$ case

Output of circuit is $c = 0$ iff f is constant

1. **Initial state:** $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. **After first set of Hadamards:** $\frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right)$

3. **After applying oracle U:**

$$U_1^\frac{1}{2} \left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \right) = \begin{cases} |+\rangle |\rangle & \text{if } f(0) = f(1) \\ |\rangle |\rangle & \text{if } f(0) \neq f(1) \end{cases}$$

4. **After applying second H on top qubit:**

$$\begin{cases} H \otimes I(|+\rangle |\rangle) = |0\rangle |\rangle & \text{if } f(0) = f(1) \\ H \otimes I(|\rangle |\rangle) = |1\rangle |\rangle & \text{if } f(0) \neq f(1) \end{cases}$$
Deutsch-Jozsa programs and systems

Algorithm

Programs
Google Cirq programming example.

Implementation
- Mach-Zehnder interferometer implementation.
Mach-Zehnder interferometer implementation of Deutsch’s algorithm

\[|0\rangle \xrightarrow{H} |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \]

- \(Z \rightarrow |-\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \)
- \(H \rightarrow |0\rangle \)
- \(H \rightarrow |1\rangle \)

- \(\rightarrow |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \)
- \(H \rightarrow -|0\rangle \)
- \(H \rightarrow -|1\rangle \)

- \(Z \rightarrow |+\rangle = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \)
- \(H \rightarrow -|0\rangle \)
- \(H \rightarrow -|1\rangle \)

- \(-Z \rightarrow |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \)
- \(H \rightarrow |0\rangle \)
- \(H \rightarrow |1\rangle \)

- \(-ZZ = -I \rightarrow |+\rangle = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \)
- \(H \rightarrow -|0\rangle \)
- \(H \rightarrow -|1\rangle \)
Table of contents

Deutsch’s algorithm: simplest quantum algorithm showing advantage vs. classical
 Problem description
 Circuit diagram and what is in the oracle
 Demonstration of Deutsch-Jozsa for the $n = 1$ case
 Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
 The state after applying oracle U
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

The classical part: converting factoring to order finding / period finding
Deutsch-Jozsa algorithm: Deutsch’s algorithm for the $n > 1$ case

The state after the first set of Hadamards

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^{\otimes n} \otimes |1\rangle = |0\ldots0\rangle |1\rangle = |0\ldots01\rangle$

2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$
Deutsch's algorithm: Deutsch-Jozsa for the $n = 1$ case

The state after applying oracle U

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^\otimes n \otimes |1\rangle = |0\ldots 0\rangle |1\rangle = |0\ldots 01\rangle$

2. After first set of Hadamards: $|+\rangle^\otimes n \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U:

$$U\left(|+\rangle^\otimes n \otimes |-\rangle\right) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes \left(\frac{|f(c)\rangle - |\overline{f(c)}\rangle}{\sqrt{2}}\right)$$

$$= \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$
Lemma: the Hadamard transform

\[H^\otimes n |c\rangle = \frac{1}{2^{n/2}} \sum_{m=0}^{2^n-1} (-1)^{c \cdot m} |m\rangle \]

\[H \otimes^n |c\rangle = H |c_0\rangle \otimes H |c_1\rangle \otimes \ldots \otimes H |c_{n-1}\rangle \]
\[= \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{c_0} |1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{c_1} |1\rangle \right) \otimes \ldots \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{c_{n-1}} |1\rangle \right) \]
\[= \frac{1}{2^{n/2}} \sum_{m=0}^{2^n-1} (-1)^{c_0 m_0 + c_1 m_1 + \ldots + c_{n-1} m_{n-1}} \mod 2 |m\rangle \]

Try it out for \(n = 1 \): \[H^\otimes 1 |c\rangle = \frac{1}{2^{1/2}} \sum_{m=0}^{2^1-1} (-1)^{c \cdot m} |m\rangle = \]
\[\frac{1}{\sqrt{2}} (-1)^0 |0\rangle + \frac{1}{\sqrt{2}} (-1)^c |1\rangle = \begin{cases} \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle = |+\rangle & \text{if } |c\rangle = |0\rangle \\ \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle = |-\rangle & \text{if } |c\rangle = |1\rangle \end{cases} \]
Deutsch-Jozsa algorithm: Deutsch’s algorithm for the $n > 1$ case

The state after applying oracle U

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^\otimes n \otimes |1\rangle = |0 \ldots 0\rangle |1\rangle = |0 \ldots 01\rangle$

2. After first set of Hadamards: $|+\rangle^\otimes n \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U: $U(|+\rangle^\otimes n \otimes |-\rangle) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$

4. After final set of Hadamards:

\[
(H^\otimes n \otimes I) \left(\frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \right)
\]

\[
= \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} \left(\frac{1}{2^{n/2}} \sum_{m=0}^{2^n-1} (-1)^{c \cdot m} |m\rangle \right) \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)
\]

\[
= \frac{1}{2^n} \sum_{c=0}^{2^n-1} \sum_{m=0}^{2^n-1} (-1)^{f(c)+c \cdot m} |m\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)
\]
Deutsch-Jozsa algorithm: Deutsch’s algorithm for the $n > 1$ case

Output of circuit is 0 iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^\otimes n \otimes |1\rangle = |0\ldots0\rangle |1\rangle = |0\ldots01\rangle$

2. After first set of Hadamards: $|+\rangle^\otimes n \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U: $U(|+\rangle^\otimes n \otimes |-\rangle) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$

4. After final set of Hadamards: $(H^\otimes n \otimes I)\left(\frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)\right) = \frac{1}{2^n} \sum_{c=0}^{2^n-1} \sum_{m=0}^{2^n-1} (-1)^{f(c)+c\cdot m} |m\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$

5. Amplitude of upper register being $|m\rangle = |0\rangle$:

\[
\frac{1}{2^n} \sum_{c=0}^{2^n-1} (-1)^{f(c)}
\]
Deutsch-Jozsa algorithm: Deutsch’s algorithm for the $n > 1$ case

Output of circuit is 0 iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle^\otimes n \otimes |1\rangle = |0\ldots0\rangle |1\rangle = |0\ldots01\rangle$

2. After first set of Hadamards: $|+\rangle^\otimes n \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} |c\rangle \otimes |-\rangle$

3. After applying oracle U: $U\left(|+\rangle^\otimes n \otimes |-\rangle\right) = \frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$

4. After final set of Hadamards: $\left(H^\otimes n \otimes I\right)\left(\frac{1}{2^{n/2}} \sum_{c=0}^{2^n-1} (-1)^{f(c)} |c\rangle \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right) = \frac{1}{2^n} \sum_{c=0}^{2^n-1} \sum_{m=0}^{2^n-1} (-1)^{f(c)+c\cdot m} |m\rangle \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$

5. Amplitude of upper register being $|m\rangle = |0\rangle$: $\frac{1}{2^n} \sum_{c=0}^{2^n-1} (-1)^{f(c)}$

6. Probability of measuring upper register to get $m = 0$:

$$\left|\frac{1}{2^n} \sum_{c=0}^{2^n-1} (-1)^{f(c)}\right|^2 = \begin{cases} \left|(-1)^{f(c)}\right|^2 = 1 & \text{if } f \text{ is constant} \\ 0 & \text{if } f \text{ is balanced} \end{cases}$$
Table of contents

Deutsch’s algorithm: simplest quantum algorithm showing advantage vs. classical
 Problem description
 Circuit diagram and what is in the oracle
 Demonstration of Deutsch-Jozsa for the \(n = 1 \) case
 Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
 The state after applying oracle \(U \)
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

The classical part: converting factoring to order finding / period finding
Table of contents

Deutsch’s algorithm: simplest quantum algorithm showing advantage vs. classical
 Problem description
 Circuit diagram and what is in the oracle
 Demonstration of Deutsch-Jozsa for the \(n = 1 \) case
 Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
 The state after applying oracle \(U \)
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

The classical part: converting factoring to order finding / period finding
The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b^2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about $2^{\frac{3}{2}\sqrt{b}}$ time.

- Makes multiplying large primes a candidate one-way function.
- It’s an open question of mathematics to prove whether one way functions exist.

Public key cryptography

Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50
The factoring problem

One way functions for cryptography

1. Multiplying two \(b \)-bit numbers: on order of \(b^2 \) time.
2. Best known classical algorithm to factor a \(b \)-bit number: on order of about \(2^{\sqrt[3]{b}} \) time.

Quantum integer factoring algorithm

- Quantum algorithm to factor a \(b \)-bit number: \(b^3 \).
- Peter Shor, 1994.
- Important example of quantum algorithm offering exponential speedup.
Table of contents

Deutsch’s algorithm: simplest quantum algorithm showing advantage vs. classical
 Problem description
 Circuit diagram and what is in the oracle
 Demonstration of Deutsch-Jozsa for the $n = 1$ case
 Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
 The state after applying oracle U
 Lemma: the Hadamard transform
 The state after the final set of Hadamards
 Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

The classical part: converting factoring to order finding / period finding
The classical part: converting factoring to order finding / period finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to additional ways that future quantum computing can be useful / threatening to existing cryptography.
Factoring

\[N = pq \]

\[N = 15 = 3 \times 5 \]
Modular square root

Finding the modular square root

\[s^2 \mod N = 1 \]

\[s = \sqrt{1} \mod N \]

Trivial roots would be \(s = \pm 1 \).

- Are there other (nontrivial) square roots?
- For \(N = 15 \), \(s = \pm 4 \), \(s = \pm 11 \), \(s = \pm 14 \) are all nontrivial square roots. (Show this).
- Later in these slides, we will see how nontrivial square roots are useful for factoring.
Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm. For example, a=6 and n=15.

Exercise: list the possible a’s for $N = 15$.