
1/13

C Programming: 2D arrays, pass-by-value vs.
pass-by-reference

Yipeng Huang

Rutgers University

February 6, 2023



2/13

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

Stack data structure: struct, push(), pop()



3/13

Canvas timed quiz 2 and programming assignment 1

Quiz 2

1. Due Friday 2/10.
2. 45 minutes.
3. Two tries.
4. Pointers, arrays, passing by value and reference.
5. Reviews recent concepts that would be fair game for exams.

Progress on Programming assignment 2?

1. Due Friday 2/10.
2. Arrays, pointers, recursion, beginning data structures.



4/13

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

Stack data structure: struct, push(), pop()



5/13

Lesson 6: 2D arrays



6/13

Lesson 7: Passing-by-value

Using stack and heap picture, understand how pass by value and pass by
reference are different.
▶ C functions are entirely pass-by-value
▶ swap_pass_by_values() doesn’t actually succeed in swapping two

variables.



7/13

Lesson 8: Passing-by-reference

Using stack and heap picture, understand how pass by value and pass by
reference are different.
▶ You can create the illusion of pass-by-reference by passing pointers
▶ swap_pass_by_references() does succeed in swapping two variables.



8/13

Lesson 9: Passing an array leads to passing-by-reference



9/13

Lesson 10: How the stack works; recursion example

Low addresses Global / static data

Heap grows downward Dynamic memory allocation

High addresses Stack grows upward Local variables, parameters

Table: Memory structure



10/13

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

Stack data structure: struct, push(), pop()



11/13

matMul.c: Function for matrix-matrix multiplication

What to pay attention to

▶ How matMulProduct result is given back to caller of function.
▶ How and where memory is allocated and freed.



12/13

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

Stack data structure: struct, push(), pop()



13/13

struct

arrays vs structs

▶ Arrays group data of the same type. The [] operator accesses array elements.
▶ Structs group data of different type. The . operator accesses struct elements.

These are equivalent; the latter is shorthand:
struct element* root;

▶ (*root).number = value;

▶ root->number = value;


	Announcements
	Canvas timed quiz 2 and programming assignment 1

	pointers.c: A lab exercise for pointers, arrays, and memory
	Lesson 6: 2D arrays
	Lesson 7: Passing-by-value
	Lesson 8: Passing-by-reference
	Lesson 9: Passing an array leads to passing-by-reference
	Lesson 10: How the stack works; recursion example

	matMul.c: Function for matrix-matrix multiplication
	Stack data structure: struct, push(), pop()

