
1/16

C Programming: Data structures

Yipeng Huang

Rutgers University

February 9, 2023

2/16

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

Why matMul() is written that way

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

3/16

Canvas timed quiz 2 and programming assignment 1

Quiz 2

1. Due Friday 2/10.
2. 45 minutes.
3. Two tries.
4. Pointers, arrays, passing by value and reference.
5. Reviews recent concepts that would be fair game for exams.

Progress on Programming assignment 2?

1. Due Friday 2/10.
2. Arrays, pointers, recursion, beginning data structures.

4/16

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

Why matMul() is written that way

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

5/16

Why matMul() is written that way

The matMul function signature in the
provided example code.

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int** matMulProduct
8);

A more "natural" function signature with
return. How to implement?

1 int** matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b
7);

6/16

Why matMul() is written that way

The matMul function signature in the
provided example code. Caller of
matMul allocates memory.

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int** matMulProduct
8);

Suppose we want matMul() to be in
charge of allocating memory. How to
implement?

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int*** matMulProduct
8);

7/16

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

Why matMul() is written that way

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

8/16

struct

arrays vs structs

▶ Arrays group data of the same type. The [] operator accesses array elements.
▶ Structs group data of different type. The . operator accesses struct elements.

These are equivalent; the latter is shorthand:
struct element* root;

▶ (*root).number = value;

▶ root->number = value;

9/16

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

Why matMul() is written that way

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

10/16

Understanding pass-by-value and pass-by-reference

In this section, we study the push() function for a stack.
The push() function needs to make changes to the top of the stack, and return
pointers to stack elements such that the elements can later be freed from memory.

We consider four function signatures for push() that are incorrect.

1. void push (char value, struct stack s);

2. void push (char value, struct stack* s);

3. struct stack push (char value, struct stack s);

4. struct stack push (char value, struct stack* s);

And we consider two function signatures for push() that are correct.

5. void push (char value, struct stack** s);

6. struct stack* push (char value, struct stack* s);

11/16

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack
s) { // bug in signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', s);
4 printf ("s.data = %c\n", s.data)

;
5 }

Version 1. An incorrect function signature for push().
This version of push() completely passes-by-value and has no effect on struct
stack s in main(), so s.data is uninitialized.

12/16

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

* s) { // bug in signature
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', &s);
4 push('C', &s);
5 // printf ("s = %p\n", s);
6 struct stack* pointer = &s;
7 printf ("pop: %c\n", pop(&

pointer));
8 printf ("pop: %c\n", pop(&

pointer));
9 }

Version 2. An incorrect function signature for push().
This version of push() also has no effect on struct stack s in main().

13/16

Understanding pass-by-value and pass-by-reference
1 struct stack push (char value,

struct stack s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return s;
10 }

Version 3. An incorrect function signature for push().
Here, we try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will lead to a memory leak (pointer is lost). Line 5
assigns the next pointer to an address &s which will be out of scope in main().

14/16

Understanding pass-by-value and pass-by-reference

1 struct stack push (char value,
struct stack* s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return *s;
10 }

1 int main () {
2 struct stack s;
3 s = push('S', &s);
4 printf ("s.data = %c\n", s.data)

;
5 s = push('C', &s);
6 printf ("s.data = %c\n", s.data)

;
7 }

Version 4. An incorrect function signature for push().
Here, we again try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will still lead to a memory leak (pointer is lost).

15/16

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

** s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = *s;
6

7 *s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack* s;
3 push('S', &s);
4 push('C', &s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 5. A correct function signature for push().
struct stack* s in main() updates by passing the struct stack *
parameter via pass-by-reference, leading to the push() signature that you see
here. This matches the signature that you see for the pop() function.

16/16

Understanding pass-by-value and pass-by-reference
1 struct stack* push (char value,

struct stack* s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return s;
10 }

1 int main () {
2 struct stack* s;
3 s = push('S', s);
4 s = push('C', s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 6. A correct function signature for push().
struct stack* s updates via the return type of push() in main(), lines 3 and
4. Side note, this is similar to the function signature BSTNode* insert
(BSTNode* root, int key) shown in class on 2/4. Side note, pop() needs to
return the character data, so pop() cannot have a similar function signature.

	Announcements
	Canvas timed quiz 2 and programming assignment 1

	Why matMul() is written that way
	Stack data structure: struct, push(), pop()
	Understanding pass-by-value and pass-by-reference

