
1/35

Representing and Manipulating Information: Bits, Ints, and
Ops

Yipeng Huang

Rutgers University

February 20, 2023

2/35

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

3/35

Programming assignment 2: Queues, trees, and graphs

Programming Assignment 2 parts

1. bstLevelOrder: needs a queue (available in pa2/queue, will discuss today)
2. edgelist: will discuss today
3. isTree: needs DFS (stack)
4. solveMaze: needs BFS (queue)
5. mst: a greedy algorithm
6. findCycle: needs either DFS (stack) or BFS (queue)
7. matChainMul: another dynamic programming problem and prelude to

integer operations

4/35

Programming assignment 2 & reading assignment

No quiz this week

1. Focus on PA2.

Programming assignment 2

1. Due Friday 2/24.
2. More data structures: queues, BSTs, graphs; solidify managing memory.

Reading assignment: CS:APP Chapters 2.4

1. Preparation for next week
2. All about floating point numbers: A case studying in the design of an

engineering standard.

5/35

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

6/35

Why binary

Figure:

7/35

Why binary

Figure: Rahul Sarpeshkar. Analog Versus Digital: Extrapolating from Electronics to
Neurobiology. 1998.

8/35

Why binary

Digital encodings
Each doubling of either precision or range only needs one additional bit.

Analog encodings
Each doubling of either precision or range needs doubling of either area or power.

9/35

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal
0 0b0000 0o0 0x0
1 0b0001 0o1 0x1
2 0b0010 0o2 0x2
3 0b0011 0o3 0x3
4 0b0100 0o4 0x4
5 0b0101 0o5 0x5
6 0b0110 0o6 0x6
7 0b0111 0o7 0x7

Decimal Binary Octal Hexadecimal
8 0b1000 0o10 0x8
9 0b1001 0o11 0x9

10 0b1010 0o12 0xA
11 0b1011 0o13 0xB
12 0b1100 0o14 0xC
13 0b1101 0o15 0xD
14 0b1110 0o16 0xE
15 0b1111 0o17 0xF

In C, format specifiers for printf() and fscanf():
1. decimal: ’%d’
2. binary: none
3. octal: ’%o’
4. hexadecimal: ’%x’

10/35

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0b0 to 0b11111111
3. octal: 0 to 0o377 (group by 3 bits)
4. hexadecimal: 0x00 to 0xFF (group by 4 bits)

11/35

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255
???

#000000 #FFFFFF #6A757C #CC0033

12/35

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFFF #6A757C #CC0033

13/35

Don’t confuse the bitstring vs. the interpreted value

The bitstring
11111111, 377, 255, FF

Interpretation of the value
To interpret the value of a bitstring, you need to know:

1. the radix, number base: 2, 8, 10, 16.
2. the representation of signed values: two’s complement.
3. size of the data type: char, short, int, long
4. decimal point

14/35

Representing characters

▶ char is a 1-byte, 8-bit
data type.

▶ ASCII is a 7-bit
encoding standard.

▶ "man ascii" to see
Linux manual.

▶ Compile and run
ascii.c to see it in
action.

▶ Some interesting
characters: 7 (bell), 10
(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

15/35

Bitwise operations

Why are bitwise operations important?

▶ Network and UNIX settings using bit masks (e.g., umask)
▶ Hardware and microcontroller programming (e.g., Arduinos)
▶ Instruction set architecture encodings (e.g., ARM, x86)

16/35

Bitwise operations

˜: bitwise NOT
unsigned char a = 128

a = 0b1000_0000
˜a = ˜0b1000_0000

= 0b0111_1111
= 127

b ˜ b
0 1
1 0

17/35

Bitwise operations

&: bitwise AND

3&1 = 0b11&0b01
= 0b01
= 1

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

18/35

Bitwise operations

|: bitwise OR

3|1 = 0b11|0b01
= 0b11
= 3

2|1 = 0b10|0b01
= 0b11
= 3

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

19/35

Bitwise operations

ˆ: bitwise XOR

3 ∧ 1 = 0b11 ∧ 0b01
= 0b10
= 2

a b a ˆ b
0 0 0
0 1 1
1 0 1
1 1 0

20/35

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

21/35

Don’t confuse bitwise operators with logical operators

Bitwise operators

▶ ˜
▶ &
▶ |
▶ ˆ

Logical operators

▶ !
▶ &&
▶ ||
▶ != (for bool type)

22/35

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

23/35

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

24/35

Representing negative and signed integers

Sign magnitude
Flip leading bit.

25/35

Representing negative and signed integers

1s’ complement

▶ Flip all bits
▶ Addition in 1s’ complement is sound
▶ In this encoding there are 2 encodings for 0
▶ -0: 0b1111
▶ +0: 0b0000

26/35

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

▶ what is the most positive value you can represent? 127
▶ what is the most negative value you can represent? -128
▶ how to represent -1? 11111111
▶ how to represent -2? 11111110

27/35

Representing negative and signed integers

2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

▶ MSB: 1 for negative
▶ To make a number negative: flip all bits and add 1.
▶ Addition in 2’s complement is sound

28/35

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

0
2
4
6
8

10
12
14
16

Unsigned addition (4-bit word)

Normal

Overflow

Figure: Image credit: CS:APP

29/35

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8
-6
-4
-2
0
2
4
6
8

Two's complement addition (4-bit word)

Normal

Positive
overflow

Negative
overflow

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

30/35

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

31/35

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

Learning objectives

▶ Review and master recursion.
▶ Array subsetting using pointer arithmetic.
▶ Using pass-by-reference to return computed results.
▶ A new algorithm that most classmates have not seen before.

Cost of multiplying matrices: the number of multiplies

▶ Al×m × Bm×n

▶ Needs l × m × n number of multiplies
▶ (Well-kept secret: fewer multiplications possible, see Strassen’s algorithm)

32/35

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

A × B × C =
[
a0,0 a0,1

]
1×2

×
[

b0,0

b1,0

]
2×1

×
[
c0,0 c0,1

]
1×2

Parenthesization 1: 4+4 = 8 multiplies

A × (B × C) =
[
a0,0 a0,1

]
1×2

×
[

b0,0c0,0 b0,0c0,1

b1,0c0,0 b1,0c0,1

]
2×2

=
[(

a0,0b0,0c0,0 + a0,1b1,0c0,0

) (
a0,0b0,0c0,1 + a0,1b1,0c0,1

)]
1×2

Parenthesization 2: 2+2 = 4 multiplies

(A × B)× C =
(

a0,0b0,0 + a0,1b1,0

)
×

[
c0,0 c0,1

]
1×2

=
[(

a0,0b0,0 + a0,1b1,0

)
c0,0

(
a0,0b0,0 + a0,1b1,0

)
c0,1

]
1×2

33/35

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

A × B × C × D

First partitioning

▶ A(BCD); but what is cost of finding
(BCD)? Needs decomposition.

▶ (AB)(CD)

▶ (ABC)D; but what is cost of finding
(ABC)? Needs decomposition.

Second partitioning

▶ A(B(CD))

▶ A((BC)D)

▶ (AB)(CD)

▶ (A(BC))D
▶ ((AB)C)D

34/35

toBin.c: Printing the binary representation

▶ Shifting and masking
▶ Try modifying to print octal.

35/35

Bit shifting

<< N Left shift by N bits

▶ multiplies by 2N

▶ 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ∗ 23

▶ −2 << 3 = 1111_11102 << 3 = 1111_00002 = −16 = −2 ∗ 23

>> N Right shift by N bits

▶ divides by 2N

▶ 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

▶ −16 >> 3 = 1111_00002 >> 3 = 1111_11102 = −2 = −16/23

	Announcements
	Bits and bytes
	Why binary
	Decimal, binary, octal, and hexadecimal
	Representing characters
	Bitwise operations

	Integers and basic arithmetic
	Representing negative and signed integers

	matChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

