Representing and Manipulating Information: Bits, Ints, and

 OpsYipeng Huang

Rutgers University

February 20, 2023

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
mat ChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

Programming assignment 2: Queues, trees, and graphs

Programming Assignment 2 parts

1. bstLevelOrder: needs a queue (available in pa2/queue, will discuss today)
2. edgelist: will discuss today
3. isTree: needs DFS (stack)
4. solveMaze: needs BFS (queue)
5. mst: a greedy algorithm
6. findCycle: needs either DFS (stack) or BFS (queue)
7. matChainMul: another dynamic programming problem and prelude to integer operations

Programming assignment 2 \& reading assignment

No quiz this week

1. Focus on PA2.

Programming assignment 2

1. Due Friday $2 / 24$.
2. More data structures: queues, BSTs, graphs; solidify managing memory.

Reading assignment: CS:APP Chapters 2.4

1. Preparation for next week
2. All about floating point numbers: A case studying in the design of an engineering standard.

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
mat ChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

Why binary

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
- Computers determine what to do (instructions)
- ... and represent and manipulate numbers, sets, strings, etc...

■ Why bits? Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

Why binary

Figure: Rahul Sarpeshkar. Analog Versus Digital: Extrapolating from Electronics to Neurobiology. 1998.

Why binary

Digital encodings

Each doubling of either precision or range only needs one additional bit.

Analog encodings

Each doubling of either precision or range needs doubling of either area or power.

Decimal, binary, octal, and hexadecimal

Decimal	Binary	Octal	Hexadecimal			Decimal	Binary	Octal
	Hexadecimal							
0	0 b 0000	0 o 0	0×0		8	0 b 1000	0 o 10	0×8
1	0 b 0001	0 o 1		0×1		9	0 b 1001	0 o 11

In C, format specifiers for printf() and fscanf():

1. decimal: '\%d'
2. binary: none
3. octal: ' $\% \mathrm{o}^{\prime}$
4. hexadecimal: ' $\% x^{\prime}$

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0 b 0 to 0 b 11111111
3. octal: 0 to 00377 (group by 3 bits)
4. hexadecimal: 0×00 to $0 \times \mathrm{FF}$ (group by 4 bits)

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

			???
\#000000	\#FFFFFF	\#6A757C	\#CC0033

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

\#000000	\#FFFFFF	\#6A757C	\#CC0033

Don't confuse the bitstring vs. the interpreted value

The bitstring
11111111, 377, 255, FF
Interpretation of the value
To interpret the value of a bitstring, you need to know:

1. the radix, number base: $2,8,10,16$.
2. the representation of signed values: two's complement.
3. size of the data type: char, short, int, long
4. decimal point

Representing characters

USASCII code chart

- char is a 1-byte, 8 -bit data type.
- ASCII is a 7-bit encoding standard.
- "man ascii" to see Linux manual.
- Compile and run ascii.c to see it in action.
- Some interesting characters: 7 (bell), 10 (new line), 27 (escape).

$b_{7} b_{6}$					${ }^{0} 0$	0_{0}	$\begin{array}{llll}0 & & \\ & 1 & \\ & & 0\end{array}$	$0^{0} 1$	${ }^{1} 0$	${ }^{1} 0$	${ }^{1} 10$	${ }^{1} 1$
$\sqrt{i}=\sqrt{b_{4}}$	b_{3}	$\left\lvert\, \begin{gathered} b_{2} \\ 1 \end{gathered}\right.$	b_{1}		0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	0	P	,	p
0	0	0	1	1	SOH	DC1	!	1	A	0	0	9
0	0	1	0	2	STX	DC2	"	2	B	R	b	r
0	0	1	1	3	ETX	DC3	\#	3	C	S	c	s
0	1	0	0	4	EOT	DC4	1	4	D	T	d	\dagger
0	1	0	1	5	ENO	NAK	\%	5	E	U	e	u
0	1	1	0	6	ACK	SYN	8	6	F	V	1	\checkmark
0	1	1	1	7	BEL	ETB		7	6	w	9	w
1	0	0	0	8	BS	CAN	1	8	H	X	n	x
1	0	0	1	9	HT	EM	1	9	1	Y	i	y
1	0	1	0	10	LF	Sub	*	:	J	2	j	2
1	0	1	1	11	VT	ESC	+	;	K	[k	(
1	1	0	0	12	FF	FS	,	\leq	L	1	1	1
1	1	0	1	13	CR	GS	-	$=$	M	J	m	\}
1	1	1	0	14	SO	RS	.	$>$	N	へ	n	\sim
1	1	1	1	15	S1	US	1	?	0	-	0	DEL

Figure: ASCII character set. Image credit Wikimedia

Bitwise operations

Why are bitwise operations important?

- Network and UNIX settings using bit masks (e.g., umask)
- Hardware and microcontroller programming (e.g., Arduinos)
- Instruction set architecture encodings (e.g., ARM, x86)

Bitwise operations

~: bitwise NOT

unsigned char $\mathrm{a}=128$

$$
\begin{aligned}
a & =0 b 1000 _0000 \\
\sim & =\sim 0 b 1000 _0000 \\
& =0 b 0111 _1111 \\
& =127
\end{aligned}
$$

Bitwise operations

\&: bitwise AND

$$
\begin{aligned}
3 \& 1 & =0 b 11 \& 0 b 01 \\
& =0 b 01 \\
& =1
\end{aligned}
$$

a	b	$\mathrm{a} \& \mathrm{~b}$
0	0	0
0	1	0
1	0	0
1	1	1

Bitwise operations

I: bitwise OR

$$
\begin{aligned}
3 \mid 1 & =0 b 11 \mid 0 b 01 \\
& =0 b 11 \\
& =3 \\
2 \mid 1 & =0 b 10 \mid 0 b 01 \\
& =0 b 11 \\
& =3
\end{aligned}
$$

a	b	$\mathrm{a} \mid \mathrm{b}$
0	0	0
0	1	1
1	0	1
1	1	1

Bitwise operations

^: bitwise XOR

a	b	$\mathrm{a}^{\wedge} \mathrm{b}$
0	0	0
0	1	1
1	0	1
1	1	0

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

Don't confuse bitwise operators with logical operators

Bitwise operators

- \&
- 1
-

Logical operators
-!

- \&\&
- | 1
- != (for bool type)

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
matChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. $1 \mathrm{~s}^{\prime}$ complement
3. 2's complement

Representing negative and signed integers

Sign magnitude
Flip leading bit.

Representing negative and signed integers

1s' complement

- Flip all bits
- Addition in 1s' complement is sound
- In this encoding there are 2 encodings for 0
- $-0: 0 \mathrm{0} 1111$
- +0: 0b0000

Representing negative and signed integers

2's complement

signed char	weight in decimal
00000001	1
00000010	2
00000100	4
00001000	8
00010000	16
00100000	32
01000000	64
10000000	-128

Table: Weight of each bit in a signed char type

- what is the most positive value you can represent? 127
- what is the most negative value you can represent? -128
- how to represent -1? 11111111
- how to represent -2? 11111110

Representing negative and signed integers

2's complement

signed char	weight in decimal
00000001	1
00000010	2
00000100	4
00001000	8
00010000	16
00100000	32
01000000	64
10000000	-128

Table: Weight of each bit in a signed char type

- MSB: 1 for negative
- To make a number negative: flip all bits and add 1.
- Addition in 2's complement is sound

Importance of paying attention to limits of encoding

Figure: Image credit: CS:APP

Figure: Image credit: CS:APP

Importance of paying attention to limits of encoding

Figure: Image credit: CS:APP

Figure: Image credit: CS:APP
https://www.theatlantic.com/technology/archive/2014/12/ how-gangnam-style-broke-youtube/383389/

Table of contents

Announcements

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
matChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

mat ChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

Learning objectives

- Review and master recursion.
- Array subsetting using pointer arithmetic.
- Using pass-by-reference to return computed results.
- A new algorithm that most classmates have not seen before.

Cost of multiplying matrices: the number of multiplies

- $A_{l \times m} \times B_{m \times n}$
- Needs $l \times m \times n$ number of multiplies
- (Well-kept secret: fewer multiplications possible, see Strassen's algorithm)
matChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

$$
A \times B \times C=\left[\begin{array}{ll}
a_{0,0} & a_{0,1}
\end{array}\right]_{1 \times 2} \times\left[\begin{array}{l}
b_{0,0} \\
b_{1,0}
\end{array}\right]_{2 \times 1} \times\left[\begin{array}{ll}
c_{0,0} & c_{0,1}
\end{array}\right]_{1 \times 2}
$$

Parenthesization 1: $4+4=8$ multiplies

$$
\begin{aligned}
& A \times(B \times C)=\left[\begin{array}{ll}
a_{0,0} & a_{0,1}
\end{array}\right]_{1 \times 2} \times\left[\begin{array}{ll}
b_{0,0} c_{0,0} & b_{0,0} c_{0,1} \\
b_{1,0} c_{0,0} & b_{1,0} c_{0,1}
\end{array}\right]_{2 \times 2} \\
& =\left[\begin{array}{ll}
\left(a_{0,0} b_{0,0} c_{0,0}+a_{0,1} b_{1,0} c_{0,0}\right) & \left(a_{0,0} b_{0,0} c_{0,1}+a_{0,1} b_{1,0} c_{0,1}\right)
\end{array}\right]_{1 \times 2}
\end{aligned}
$$

Parenthesization 2: $2+2=4$ multiplies

$$
\left.\begin{array}{l}
(A \times B) \times C=\left(a_{0,0} b_{0,0}+a_{0,1} b_{1,0}\right) \times\left[\begin{array}{ll}
c_{0,0} & c_{0,1}
\end{array}\right]_{1 \times 2} \\
=\left[\left(a_{0,0} b_{0,0}+a_{0,1} b_{1,0}\right) c_{0,0} \quad\left(a_{0,0} b_{0,0}+a_{0,1} b_{1,0}\right) c_{0,1}\right.
\end{array}\right]_{1 \times 2} .
$$

matChainMul.c: Minimum number of multiplies needed for matrix chain multiplication
$A \times B \times C \times D$
First partitioning

- $A(B C D)$; but what is cost of finding (BCD)? Needs decomposition.
- $(A B)(C D)$
- ($A B C) D$; but what is cost of finding (ABC)? Needs decomposition.

Second partitioning

- $A(B(C D))$
- $A((B C) D)$
- $(A B)(C D)$
- $(A(B C)) D$
- $((A B) C) D$
toBin. c: Printing the binary representation
- Shifting and masking
- Try modifying to print octal.

Bit shifting

$\ll N$ Left shift by N bits

- multiplies by 2^{N}
- $2 \ll 3=0000 _0010_{2} \ll 3=0001 _0000_{2}=16=2 * 2^{3}$
- $-2 \ll 3=1111 _1110_{2} \ll 3=1111 _0000_{2}=-16=-2 * 2^{3}$
>> N Right shift by N bits
- divides by 2^{N}
- $16 \gg 3=0001 _0000_{2} \gg 3=0000 _0010_{2}=2=16 / 2^{3}$
- $-16 \gg 3=1111 _0000_{2} \gg 3=1111 _1110_{2}=-2=-16 / 2^{3}$

