
1/23

Representing and Manipulating Information: Integer
operations and fixed point

Yipeng Huang

Rutgers University

February 23, 2023



2/23

Table of contents

Announcements

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication



3/23

Programming assignment 2: Queues, trees, and graphs

Programming Assignment 2 parts

1. bstLevelOrder: needs a queue (available in pa2/queue, will discuss today)
2. edgelist: will discuss today
3. isTree: needs DFS (stack)
4. solveMaze: needs BFS (queue)
5. mst: a greedy algorithm
6. findCycle: needs either DFS (stack) or BFS (queue)
7. matChainMul: another dynamic programming problem and prelude to

integer operations



4/23

Programming assignment 2 & reading assignment

Programming assignment 2

1. Due Friday 2/24.
2. More data structures: queues, BSTs, graphs; solidify managing memory.

Reading assignment: CS:APP Chapters 2.4

1. Preparation for next week
2. All about floating point numbers: A case studying in the design of an

engineering standard.



5/23

Table of contents

Announcements

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication



6/23

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement



7/23

Representing negative and signed integers

Sign magnitude
Flip leading bit.



8/23

Representing negative and signed integers

1s’ complement

▶ Flip all bits
▶ Addition in 1s’ complement is sound
▶ In this encoding there are 2 encodings for 0
▶ -0: 0b1111
▶ +0: 0b0000



9/23

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

▶ what is the most positive value you can represent? 127
▶ what is the most negative value you can represent? -128
▶ how to represent -1? 11111111
▶ how to represent -2? 11111110



10/23

Representing negative and signed integers

2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

▶ MSB: 1 for negative
▶ To make a number negative: flip all bits and add 1.
▶ Addition in 2’s complement is sound



11/23

Importance of paying attention to limits of encoding

0 2 4 6 8 10 
12 14 

0 
2 

4 
6 

8 
10 

12 
14 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Integer addition 

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14 
0 

2 
4 

6 
8 

10 
12 

14 

0 
2 
4 
6 
8 

10 
12 
14 
16 

Unsigned addition (4-bit word) 

Normal 

Overflow 

Figure: Image credit: CS:APP



12/23

Importance of paying attention to limits of encoding

0 2 4 6 8 10 
12 14 

0 
2 

4 
6 

8 
10 

12 
14 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Integer addition 

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6 
-8 

-6 
-4 

-2 
0 

2 
4 

6 

-8 
-6 
-4 
-2 
0 
2 
4 
6 
8 

Two's complement addition (4-bit word) 

Normal 

Positive 
overflow 

Negative 
overflow 

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/


13/23

toBin.c: Printing the binary representation

▶ Shifting and masking
▶ Try modifying to print octal.



14/23

Bit shifting

<< N Left shift by N bits

▶ multiplies by 2N

▶ 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ∗ 23

▶ −2 << 3 = 1111_11102 << 3 = 1111_00002 = −16 = −2 ∗ 23

>> N Right shift by N bits

▶ divides by 2N

▶ 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

▶ −16 >> 3 = 1111_00002 >> 3 = 1111_11102 = −2 = −16/23



15/23

Table of contents

Announcements

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication



16/23

Unsigned fixed-point binary for fractions

	
bm	
 bm–1	
 b2	
 b1	
 b0	
 b–1	
 b–2	
 b–3	
 b–n+1	
	
 .	

1	

2	

4	


2m–1
	


2m	


	

	


1/2	

1/4	

1/8	


1/2n–1	


b–n	


1/2n	


Figure: Fractional binary. Image credit CS:APP



17/23

Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

▶ .625 = .5 + .125 = 0000.10102

▶ 1001.10002 = 9 + .5 = 9.5



18/23

Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

▶ −.625 = −8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

▶ 1001.10002 = −8 + 1 + .5 = −6.5



19/23

Limitations of fixed-point

▶ Can only represent numbers of the form x/2k

▶ Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)



20/23

Table of contents

Announcements

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication



21/23

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

Learning objectives

▶ Review and master recursion.
▶ Array subsetting using pointer arithmetic.
▶ Using pass-by-reference to return computed results.
▶ A new algorithm that most classmates have not seen before.

Cost of multiplying matrices: the number of multiplies

▶ Al×m × Bm×n

▶ Needs l × m × n number of multiplies
▶ (Well-kept secret: fewer multiplications possible, see Strassen’s algorithm)



22/23

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

A × B × C =
[
a0,0 a0,1

]
1×2

×
[

b0,0

b1,0

]
2×1

×
[
c0,0 c0,1

]
1×2

Parenthesization 1: 4+4 = 8 multiplies

A × (B × C) =
[
a0,0 a0,1

]
1×2

×
[

b0,0c0,0 b0,0c0,1

b1,0c0,0 b1,0c0,1

]
2×2

=
[(

a0,0b0,0c0,0 + a0,1b1,0c0,0

) (
a0,0b0,0c0,1 + a0,1b1,0c0,1

)]
1×2

Parenthesization 2: 2+2 = 4 multiplies

(A × B)× C =
(

a0,0b0,0 + a0,1b1,0

)
×

[
c0,0 c0,1

]
1×2

=
[(

a0,0b0,0 + a0,1b1,0

)
c0,0

(
a0,0b0,0 + a0,1b1,0

)
c0,1

]
1×2



23/23

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

A × B × C × D

First partitioning

▶ A(BCD); but what is cost of finding
(BCD)? Needs decomposition.

▶ (AB)(CD)

▶ (ABC)D; but what is cost of finding
(ABC)? Needs decomposition.

Second partitioning

▶ A(B(CD))

▶ A((BC)D)

▶ (AB)(CD)

▶ (A(BC))D
▶ ((AB)C)D


	Announcements
	Integers and basic arithmetic
	Representing negative and signed integers

	Fractions and fixed point representation
	matChainMul.c: Minimum number of multiplies needed for matrix chain multiplication

