Representing and Manipulating Information: Floating point mastery

Yipeng Huang

Rutgers University

March 2, 2023

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Quizzes and programming assignments

Short quiz 4

▶ Due Friday. All about integers.

Programming assignment 3

► Has been out, due Friday before spring break.

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

monteCarloPi.c Using floating point and random numbers to
estimate PI

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floating point numbers

$\begin{array}{l} Avogadro's \ number \\ +6.02214 \times 10^{23} \ \textit{mol}^{-1} \end{array}$

Scientific notation

- sign
- mantissa or significand

(ロ)、(型)、(E)、(E)、 E) のQで 7/28

exponent

Different cases for floating point numbers

Value of the floating point number = $(-1)^s \times M \times 2^E$

- ► *E* is encoded the exp field
- ► *M* is encoded the frac field

1. Normalized	
s ≠0&≠255	f
2. Denormalized	
<i>s</i> 0 0 0 0 0 0 0 0	f
3a. Infinity	
s 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3b. NaN	
s 1 1 1 1 1 1 1 1 1	≠ 0

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers

Two different cases we need to consider for the encoding of E, M

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Normalized: exp field

For normalized numbers, $0 < \exp < 2^k - 1$

exp is a k-bit unsigned integer

Bias

- need a bias to represent negative exponents
- ▶ bias = $2^{k-1} 1$
- bias is the k-bit unsigned integer: 011..111

For normalized numbers, E = exp-bias

In other words, exp = E+bias

property	float	double
k	8	11
bias	127	1023
smallest E (greatest precision)	-126	-1022
largest E (greatest range)	127	1023

Table: Summary of normalized exp field

Normalized: frac field

M = 1.frac

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ℃ 11/28

Normalized: example

- 12.375 to single-precision floating point
- sign is positive so s=0
- ▶ binary is 1100.011₂
- in other words it is $1.100011_2 \times 2^3$
- $\exp = E + \text{bias} = 3 + 127 = 130 = 1000_0010_2$

(日) (同) (三) (三) (三) (12/28)

- ▶ M = 1.100011₂ = 1.frac
- ▶ frac = 100011

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

The IEEE 754 number line

Figure: Full picture of number line for floating point values. Image credit CS:APP

Figure: Zoomed in number line for floating point values. Image credit CS:APP

(ロ) (四) (三) (三) (三) (14/28)

Denormalized: exp field

For denormalized numbers, exp = 0

Bias

- need a bias to represent negative exponents
- ▶ bias = $2^{k-1} 1$
- bias is the k-bit unsigned integer: 011..111

For denormalized numbers, E = 1-bias

property	float	double
k	8	11
bias	127	1023
Ε	-126	-1022

Table: Summary of denormalized exp field

Denormalized: frac field

M = 0.frac value represented leading with 0

Denormalized: examples

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ℃ 17/28

Floats: Summary

	normalized	denormalized
value of number	$(-1)^s imes M imes 2^E$	$(-1)^s imes M imes 2^E$
E	E = exp-bias	E = -bias + 1
bias	$2^{k-1} - 1$	$2^{k-1}-1$
exp	$0 < exp < (2^k - 1)$	exp = 0
Ň	M = 1.frac	M = 0.frac
	M has implied leading 1	M has leading 0
	greater range large magnitude numbers denser near origin	greater precision small magnitude numbers evenly spaced

Table: Summary of normalized and denormalized numbers

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

exp field needs to encode both positive and negative exponents. Why not just use one of the signed integer formats? 2's complement, 1s' complement, signed magnitude?

(ロ)、(同)、(目)、(目)、(目)、(0)(20/28)

exp field needs to encode both positive and negative exponents. Why not just use one of the signed integer formats? 2's complement, 1s' complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

(ロ)、(同)、(目)、(目)、(目)、(0)(C) 21/28

exp field needs to encode both positive and negative exponents. Why not just use one of the signed integer formats? 2's complement, 1s' complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook) 1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of 0b1_0110_111?

What is the decimal value of 0b1_0111_000?

exp field needs to encode both positive and negative exponents. Why not just use one of the signed integer formats? 2's complement, 1s' complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook) 1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of $0b1_0110_111?$ -1.875 × 2⁻¹ What is the decimal value of $0b1_0111_000?$ -2.000 × 2⁻¹

(ロ)、(同)、(目)、(目)、(目)、(0)(0, 23/28)

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest numbers around zero?

Answer: makes sure that smallest increments available are maintained around zero.

Suppose denormalized numbers NOT used.

What is the decimal value of 0b0_0000_001? 1.125×2^{-7}

What is the decimal value of 0b0_0000_111? 1.875×2^{-7}

What is the decimal value of 0b0_0001_000? 2.000×2^{-7}

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest numbers around zero?

Answer: makes sure that smallest increments available are maintained around zero.

Suppose denormalized numbers ARE used.

What is the decimal value of 0b0_0000_001? 0.125×2^{-6}

What is the decimal value of 0b0_0000_111? 0.875×2^{-6}

What is the decimal value of 0b0_0001_000? 1.000×2^{-6}

Announcements

Quizzes and programming assignments

monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers

Normalized: exp field Normalized: frac field Normalized: example

Floats: Denormalized numbers

Denormalized: exp field Denormalized: frac field Denormalized: examples

Floats: Special cases

number class	when it arises	exp field	frac field
+0 / -0		0	0
+infinity / -infinity	overflow or division by 0	$2^{k} - 1$	0
NaN not-a-number	illegal ops. such as $\sqrt{-1}$, inf-inf, inf*0	$2^{k} - 1$	non-0

Table: Summary of special cases