
1/27

The memory hierarchy: Locality

Yipeng Huang

Rutgers University

April 6, 2023

2/27

Table of contents

Announcements

Cache, memory, storage, and network hierarchy trends
Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache

3/27

Announcements

Class session plan

▶ Thursday, 4/6: Locality (Book chapters 6.1, 6.2, and 6.3)
▶ Monday, 4/10: Cache Memories (Book chapter 6.4)
▶ Thursday, 4/13: Cache-Friendly Code–cache blocking (Book chapters 6.5 and

6.6)
▶ Monday, 4/17: Cache-Friendly code–cache oblivious algorithms

4/27

Table of contents

Announcements

Cache, memory, storage, and network hierarchy trends
Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache

5/27

Cache, memory, storage, and network hierarchy trends

▶ Assembly
programming view
of computer: CPU
and memory.

▶ Full view of
computer
architecture and
systems: +caches,
+storage, +network

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Figure: Memory hierarchy. Image credit CS:APP

6/27

Cache, memory, storage, and network hierarchy trends

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Figure: Widening gap: CPU processing time vs. memory
access time. Image credit CS:APP

Topic of this chapter:

▶ Technology trends
that drive
CPU-memory gap.

▶ How to create
illusion of fast
access to capacious
data.

7/27

Static random-access memory (registers, caches)

▶ SRAM is bistable logic
▶ Access time: 1 to 10 CPU clock

cycles
▶ Implemented in the same transistor

technology as CPUs, so
improvement has matched pace.

Figure: SRAM operating principle. Image
credit Wikimedia

8/27

Dynamic random-access memory (main memory)

▶ Needs refreshing
every 10s of
milliseconds

▶ 8GB typical in
laptop; 1TB on each
ilab machine

▶ Access time: 100
CPU clock cycles

▶ Memory gap:
DRAM
technological
improvement
slower relative to
CPU/SRAM.

Figure: DRAM operating principle. Image credit ocw.mit.edu

9/27

CPU / DRAM main memory interface

Main!
memory!

I/O !
bridge!Bus interface!

ALU!

Register file!

CPU chip!

System bus! Memory bus!

Figure: Memory Bus. Image credit CS:APP

▶ DDR4 bus standard supports 25.6GB/s
transfer rate

Figure: Intel 2020 Gulftown die
shot. Image credit AnandTech

10/27

Solid state and hard disk drives (storage)

Technology

▶ SSD: flash nonvolatile memory stores data as charge.
▶ HDD: magnetic orientation.
▶ Access time: 100K CPU clock cycles

For in-depth on storage, file systems, and operating
systems, take:

▶ CS214 Systems Programming
▶ CS416 Operating Systems Design

Since summer 2021, LCSR (admins of iLab) have moved the storage systems

that supports everyone’s home directories to SSD. https://resources.cs.

rutgers.edu/docs/file-storage/storage-technology-options/

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1 …
Block 0

… Page 0 Page 1 Page P-1 …
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and !
write logical disk blocks!

Figure: SSD. Image credit
CS:APP

Surface 0!
Surface 1!
Surface 2!
Surface 3!
Surface 4!
Surface 5!

Cylinder k

Spindle!

Platter 0!

Platter 1!

Platter 2!

Figure: HDD. Image credit
CS:APP

https://resources.cs.rutgers.edu/docs/file-storage/storage-technology-options/
https://resources.cs.rutgers.edu/docs/file-storage/storage-technology-options/

11/27

I/O interfaces

Main!
memory!

I/O !
bridge! Bus interface!

ALU!

Register file!

CPU!

System bus! Memory bus!

Host bus !
adapter !

(SCSI/SATA)!

Graphics!
adapter!

USB!
controller!

Mouse! Key!
board!

Monitor!

I/O bus! Expansion slots for!
other devices such!
as network adapters!
!

Disk !
controller!

Disk drive!

Solid !
state !
disk!

Figure: I/O Bus. Image credit CS:APP

Storage interfaces

▶ SATA 3.0 interface (6Gb/s
transfer rate) typical

▶ PCIe (15.8 GB/s) becoming
commonplace for SSD

▶ But interface data rate is
rarely the bottleneck.

For in-depth on computer
network layers, take:

▶ CS352 Internet Technology

12/27

Cache, memory, storage, and network hierarchy trends

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Figure: Widening gap: CPU processing time vs. memory
access time. Image credit CS:APP

Topic of this chapter:

▶ Technology trends
that drive
CPU-memory gap.

▶ How to create
illusion of fast
access to capacious
data.

13/27

Table of contents

Announcements

Cache, memory, storage, and network hierarchy trends
Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache

14/27

Locality: How to create illusion of fast access to capacious data

From the perspective of memory hierarchy, locality is using the data in at any
particular level more frequently than accessing storage at next slower level.

First, let’s experience the puzzling effect of locality in sumArray.c

▶ sumArrayRows()
▶ sumArrayCols()

Well-written programs maximize locality

▶ Spatial locality
▶ Temporal locality

15/27

Spatial locality

1 double dotProduct (
2 double a[N],
3 double b[N],
4) {
5 double sum = 0.0;
6 for(size_t i=0; i<N; i++){
7 sum += a[i] * b[i];
8 }
9 return sum;

10 }

Spatial locality

▶ Programs tend to access adjacent
data.

▶ Example: stride 1 memory access in
a and b.

16/27

Temporal locality

1 double dotProduct (
2 double a[N],
3 double b[N],
4) {
5 double sum = 0.0;
6 for(size_t i=0; i<N; i++){
7 sum += a[i] * b[i];
8 }
9 return sum;

10 }

Temporal locality

▶ Programs tend to access data over
and over.

▶ Example: sum gets accessed N times
in iteration.

17/27

Table of contents

Announcements

Cache, memory, storage, and network hierarchy trends
Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache

18/27

CPU / cache / DRAM main memory interface

Main!
memory!

I/O!
bridge!Bus interface!

ALU!

Register file!
CPU chip!

System bus! Memory bus!

Cache !
memories!

Figure: Cache resides on CPU chip close to
register file. Image credit CS:APP

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

19/27

CPU / cache / DRAM main memory interactions

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

When CPU loads (LD) from memory

▶ Cache read hit
▶ Cache read miss

When CPU stores (ST) to memory

▶ Cache write hit
▶ Cache write miss

20/27

Table of contents

Announcements

Cache, memory, storage, and network hierarchy trends
Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache

21/27

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

▶ Fully associative cache
▶ Direct-mapped cache
▶ N-way set-associative cache

Cache design options use m-bit
memory addresses differently

▶ t-bit tag
▶ s-bit set index
▶ b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP

22/27

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

m-bit memory address
split into:

▶ t-bit tag
▶ b-bit block offset

23/27

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

b-bit block offset
▶ here, b = 3
▶ The number of bytes

in a block is
B = 2b = 23 = 8

▶ A block is the
minimum number of
bytes that can be
cached

▶ Good for capturing
spatial locality, short
strides

24/27

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

t-bit tag

▶ here,
t = m − b = m − 3

▶ When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

25/27

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Full associativity

▶ Blocks can go into any
of E ways

▶ Here, E = 3
▶ Good for capturing

temporal locality:
cache hits can happen
even with intervening
reads and writes to
other tags.

26/27

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Capacity of cache

▶ Total capacity of fully
associative cache in
bytes: C = EB = E ∗ 2b

▶ Here,
C = E∗2b = 3∗23 = 24
bytes

27/27

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Strengths

▶ Blocks can go into any
of E-ways.

▶ Hit rate is only limited
by total capacity.

Weaknesses
▶ Searching across all

valid tags is
expensive.

▶ Figuring out which
block to evict on
read/write miss is
also expensive.

▶ Requires a lot of
combinational logic.

	Announcements
	Cache, memory, storage, and network hierarchy trends
	Static random-access memory (registers, caches)
	Dynamic random-access memory (main memory)
	Solid state and hard disk drives (storage)

	Locality: How to create illusion of fast access to capacious data
	Spatial locality
	Temporal locality

	Caches: motivation
	Hardware caches supports software locality
	Software locality exploits hardware caches

	Cache placement policy (how to find data at address for read and write hit)
	Fully associative cache

