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Announcements

Class session plan

▶ Monday, 4/10: Cache Memories (Book chapter 6.4)
▶ Thursday, 4/13: Cache-Friendly Code–cache blocking (Book chapters 6.5 and

6.6)
▶ Monday, 4/17: Cache-Friendly code–cache oblivious algorithms
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Locality: How to create illusion of fast access to capacious data

From the perspective of memory hierarchy, locality is using the data in at any
particular level more frequently than accessing storage at next slower level.

First, let’s experience the puzzling effect of locality in sumArray.c

▶ sumArrayRows()
▶ sumArrayCols()

Well-written programs maximize locality

▶ Spatial locality
▶ Temporal locality
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Spatial locality

1 double dotProduct (
2 double a[N],
3 double b[N],
4 ) {
5 double sum = 0.0;
6 for(size_t i=0; i<N; i++){
7 sum += a[i] * b[i];
8 }
9 return sum;

10 }

Spatial locality

▶ Programs tend to access adjacent
data.

▶ Example: stride 1 memory access in
a and b.
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Temporal locality

1 double dotProduct (
2 double a[N],
3 double b[N],
4 ) {
5 double sum = 0.0;
6 for(size_t i=0; i<N; i++){
7 sum += a[i] * b[i];
8 }
9 return sum;

10 }

Temporal locality

▶ Programs tend to access data over
and over.

▶ Example: sum gets accessed N times
in iteration.
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CPU / cache / DRAM main memory interface

Main!
memory!

I/O!
bridge!Bus interface!

ALU!

Register file!
CPU chip!

System bus! Memory bus!

Cache !
memories!

Figure: Cache resides on CPU chip close to
register file. Image credit CS:APP

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech
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Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP
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CPU / cache / DRAM main memory interactions

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

When CPU loads (LD) from memory

▶ Cache read hit
▶ Cache read miss

When CPU stores (ST) to memory

▶ Cache write hit
▶ Cache write miss
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Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

▶ Fully associative cache
▶ Direct-mapped cache
▶ N-way set-associative cache

Cache design options use m-bit
memory addresses differently

▶ t-bit tag
▶ s-bit set index
▶ b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP
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Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

m-bit memory address
split into:

▶ t-bit tag
▶ b-bit block offset



14/31

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

b-bit block offset
▶ here, b = 3
▶ The number of bytes

in a block is
B = 2b = 23 = 8

▶ A block is the
minimum number of
bytes that can be
cached

▶ Good for capturing
spatial locality, short
strides
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Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

t-bit tag

▶ here,
t = m − b = m − 3

▶ When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.
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Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Full associativity

▶ Blocks can go into any
of E ways

▶ Here, E = 3
▶ Good for capturing

temporal locality:
cache hits can happen
even with intervening
reads and writes to
other tags.
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Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Capacity of cache

▶ Total capacity of fully
associative cache in
bytes: C = EB = E ∗ 2b

▶ Here,
C = E∗2b = 3∗23 = 24
bytes
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Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid?   +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Strengths

▶ Blocks can go into any
of E-ways.

▶ Hit rate is only limited
by total capacity.

Weaknesses
▶ Searching across all

valid tags is
expensive.

▶ Figuring out which
block to evict on
read/write miss is
also expensive.

▶ Requires a lot of
combinational logic.
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Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

m-bit memory address
split into:

▶ t-bit tag
▶ s-bit set index
▶ b-bit block offset



20/31

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

b-bit block offset
▶ here, b = 3
▶ The number of bytes

in a block is
B = 2b = 23 = 8

▶ A block is the
minimum number of
bytes that can be
cached

▶ Good for capturing
spatial locality, short
strides



21/31

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

s-bit set index
▶ here, s = 2
▶ The number of sets in

cache is
S = 2s = 22 = 4

▶ A hash function that
limits exactly where a
block can go

▶ Good for further
increasing ability to
exploit spatial locality,
short strides
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Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

t-bit tag

▶ here,
t = m−s−b = m−2−3

▶ When CPU wants to
read from or write to
memory, all t-bits in
tag need to match for
read/write hit.
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Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Direct mapping

▶ In direct-mapped
cache, blocks can go
into only one of E = 1
way



24/31

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Capacity of cache

▶ Total capacity of fully
associative cache in
bytes:
C = SEB = 2s ∗ E ∗ 2b

▶ Here, C = 2s ∗ E ∗ 2b =
22 ∗ 1 ∗ 23 = 32 bytes
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Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

▶ Simple to implement.
▶ No need to search

across tags.

Weaknesses
▶ Can lead to surprising

thrashing of cache
with unfortunate
access patterns.

▶ Unexpected conflict
misses independent of
cache capacity.
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E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E  lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size:  C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

▶ Blocks can go into any
of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

▶ Only need to search
across E tags. Avoids
costly searching
across all valid tags.

▶ Avoids conflict misses
due to unfortunate
access patterns.
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E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E  lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size:  C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:
▶ C = 32KB L1 data cache

per core

▶ S = 64 = 26 sets/cache
(s = 6 bits)

▶ E = 8 = 23 ways/set

▶ B = 64 = 26 bytes/block
(b = 6 bits)

▶ C = S ∗ E ∗ B

▶ Assuming memory
addresses are m = 48,
then tag size
t = m − s − b =
48 − 6 − 6 = 36 bits.
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E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E  lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size:  C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation
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PA5: Simulating a cache and optimizing programs for caches

Write a cache simulator
1. fullyAssociative
2. directMapped
3. setAssociative

Optimize some code for better cache performance

1. cacheBlocking
2. cacheOblivious
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PA5: Simulating a cache and optimizing programs for caches

A tour of files in the package

▶ trace files
▶ csim-ref
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