The memory hierarchy: Cache replacement and write
policies, cache-friendly code

Yipeng Huang
Rutgers University

April 17,2023

1/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
2/29

Announcements

Class session plan

» Monday, 4/17: Cache-Friendly Code—cache blocking (Book chapters 6.5 and
6.6), cache oblivious algorithms

3/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
4/29

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

» Fully associative cache tbits Sbits b bits

» Direct-mapped cache Address: | [[I

» N-way set-associative cache N ——

Tag Set index Block offset

Cache design options use m-bit

memory addresses differently
Figure: Memory addresses. Image credit
> t-bit tag CS:APP

» s-bit set index
» b-bit block offset

5/29

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

Figure: Direct-mapped cache. Image credit CS:APP

1 valid bit ttag bits
per line per line

B =2bbytes
per cache block

[Vaiia] [Tag J[o[1] -~ [B1]
Vaiia] [Tag J[o[1] - [51]

[vaia] [7eg J[o 1] — [51]
[vaia] [Tag][0 [1] — [81]

[vaiia] [Tag J[o 1] - [B4]
Vaiia] [Tag J[0[] -~ [B]

Cache size: C =B x E x S data bytes

} E lines per set

Strengths

» Blocks can go into any

of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

Only need to search
across E tags. Avoids
costly searching
across all valid tags.

Avoids conflict misses
due to unfortunate
access patterns.

6/29

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

1 valid bit ttag bits
per line per line

B =2bbytes

per cache block

] [g (o [] (o
ere]) [7] (o [11~ [o1]
] [JLo [o
vere] [T][0 [+]~ [o1]
e [7os Lo [T o]
ere] [7) [0 [1] [51]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:

>

>

C = 32KB L1 data cache
per core

S = 64 = 2° sets/cache
(s = 6 bits)

> E=8=2%ways/set
> B = 64 = 2% bytes/block

(b = 6 bits)

> Assuming memory

addresses are m = 48,
then tag size
t=m-s—b=
48 — 6 — 6 = 36 bits.

7/29

E-way set-associative cache

Set 0:

Set 1:
S =2ssets

Set S-1:

porine perine. Doliones

fie] [7o J[o [] - 1]
) [eg] Lo [+]~ [o1]
Fre] [o J (o 1] T
[vete] [7o][0 1] - [o]
] [Jo [1= o
[vea) [7eg J Lo 11~ [o1]

Cache size: C =B x E x S data bytes

} E lines per set

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

8/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
9/29

Cache hits

Memory access is serviced from cache

. _ Numberofhits
> Hit rate = Numberofmemoryaccesses

» Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)

10/29

Cache misses: metrics

Memory access cannot be serviced from cache

: _ Numberofmisses
> Miss rate = Numberofmemoryaccesses

» Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

> Average memory access time = hit time + miss rate x miss penalty

11/29

Cache misses: Classification

Compulsory misses

» First access to a block of memory will miss because cache is cold.

Contflict misses
» Multiple blocks map (hash) to the same cache set.

» Fully associative caches have no such conflict misses.

Capacity misses

» Occurs when the set of active cache blocks (working set) is larger than the
cache.

» Direct mapped caches have no such capacity misses.

12/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
13/29

Direct-mapped cache

-

Address
[Coe] CLEERLEEL|

0] [||o|1|z|a|4|s|e|v||—ﬁ‘ndset

[Cee] CEEELEE|
B G | CLLEGLGLE|

S=2s sets<

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

» The number of sets in

cache is
S=25=22—-4
A hash function that

limits exactly where a
block can go.

In direct-mapped
cache, blocks can go
into only one of E =1
way.

No cache replacement
policy is needed.

14/29

Associative caches

E ways <

valid? + match: assume yes = hit

Address of int:

-

1
[ee] GLEGLEG0|
|

t bits 100

[ee] GLREGLEG 0|

Cee] LLEEGLL]|

\

block offset

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

>

>
>

>

Blocks can go into any
of E ways

Here, E =3

Good for capturing
temporal locality.

If all
ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for

replacement?
15/29

Cache replacement policies for associative caches

FIFO: First-in, first-out
» Evict the cache line that was placed the longest ago.

» Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

» Evict the cache line that was last accessed longest ago.

» Needs a counter on each cache line, and/or a global counter (e.g., program
counter).

16/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
17/29

Policies for writes from CPU to memory

How to deal with write-hit? How to deal with write-miss?
> Write-through. Simple. Writes update both » No-write-allocate. Simple. Write-misses do
cache and memory. Costly memory bus not load block into cache. But write-misses
traffic. are not mitigated via cache support.

> Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

> Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:

> Simple: write-through + no-write-allocate.

»> Complex: write-back + write-allocate.

18/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
19/29

Cache-friendly code

Algorithms can be written so that
they work well with caches

» Maximize hit rate
» Minimize miss rate

» Minimize eviction counts

Do so by:

» Increasing spatial locality.
» Increasing temporal locality.

Advanced optimizing compilers can
automatically make such
optimizations

| 2
>

GCC optimizations

https:
//gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

—floop-interchange
—floop-block

20/29

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality”

>
>

>

Loop interchange increases spatial locality.

In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

In practice, programmers do not have to worry about this optimization.

Optimized automatically in GCC by compiler flag ~-floop-interchange
and -03.

21/29

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality”

| 2
| 2

>

Cache blocking increases temporal locality.

In PA5, fourth part "cacheBlocking" you can explore the impact of this on
matrix multiplication.

In practice, programmers do not have to worry about this optimization.

Optimized automatically in GCC by compiler flag ~floop-block. Butitis
not part of default optimizations such as ~03 so you have to remember to set
it.

22/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
23/29

Multilevel cache hierarchies

Small fast caches nested inside large
Processor package slow caches

» L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

> L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

> L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

L3 unified cache
(shared by all cores)

’ Main memory ‘

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP Figure: Intel 2020 Gulftown die shot. Image

credir AnandTech 24/29

Cache oblivious algorithms

The challenge in writing code / compiling programs to take advantage of
caches:

» Programmers do not easily have information about target machine.

» Compiling binaries for every envisioned target machine is costly.

25/29

Matrix transpose baseline algorithm: iteration

_110,0
ai,0
az.o

1 43,0
a0,0
ap,1
ao,2

| 70,3

ap,1
a1,1
az1
as1

ai,0
ai
a2
a13

ap,2
a2
a2
aso

2.0
az1
a2
a3

110,3_
a13
a3
as;3 |
as o
a31
as2

as3 |

size_t 1i=0;
(size_t 3=0;

Jxn + 1

]

i<n; i++)

Al

j<n; J++
ixn + j

{
)
1

{

26/29

Matrix transpose via recursion

_{10,0 ao,1 Ao2 403
a0 Aa1,1 a12 Aai3
azo a21 azp 23
1430 431 asp ass |
ap,0 41,0 azo 4aspo
ap,1 a1 a1 431
ap2 Aa12 a2 A32
1403 4a1,3 a3 a33

Strategy:

» Divide and conquer large matrix to
transpose into smaller transpositions.

> After some recursion, problem will fit
well inside cache capacity.

» Once enough locality exists withing
subroutine, switch to plain iterative
approach.

Advantages:

> No need to know about cache capacity

and parameters beforehand.

» Works well with deep multilevel cache

hierarchies: different amounts of
locality for.each cache level.

27/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)
Set-associative cache
Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses
Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)
Policies for writes from CPU to memory
Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction
28/29

Memory hierarchy implications for software-hardware abstraction

It is not entirely true the architecture can hide details of microarchitecture

Even less true going forward. What to do?

Application level recommendations

» Use industrial strength, optimized libraries compiled for target machine.
» Lapack, Linpack, Matlab, Python SciPy, NumPy...

» https://people.inf.ethz.ch/markusp/teaching/
263-2300-ETH-springll/slides/class08.pdf

Algorithm level recommendations
Deploy cache-oblivious algorithm implementations.

Compiler level recommendations

» Enable compiler optimizations—e.g., -03, ~floop-interchange, ~-floop-block.

» https://gcc.gnu.org/onlinedocs/gcc/Optimize—-Options.html
29/29

https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Announcements
	Cache placement policy (how to find data at address for read and write hit)
	Set-associative cache

	Cache performance metrics: hits, misses, evictions
	Cache hits
	Cache misses

	Cache replacement policy (how to find space for read and write miss)
	Direct-mapped cache need no cache replacement policy
	Associative caches need a cache replacement policy (e.g., FIFO, LRU)

	Policies for writes from CPU to memory
	Cache-friendly code
	Loop interchange
	Cache blocking

	Multilevel cache hierarchies
	Cache oblivious algorithms

	Memory hierarchy implications for software-hardware abstraction

