
1/29

The memory hierarchy: Cache replacement and write
policies, cache-friendly code

Yipeng Huang

Rutgers University

April 17, 2023

2/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

3/29

Announcements

Class session plan

▶ Monday, 4/17: Cache-Friendly Code–cache blocking (Book chapters 6.5 and
6.6), cache oblivious algorithms

4/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

5/29

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches

▶ Fully associative cache
▶ Direct-mapped cache
▶ N-way set-associative cache

Cache design options use m-bit
memory addresses differently

▶ t-bit tag
▶ s-bit set index
▶ b-bit block offset

t bits! s bits! b bits!

0!m-1!

Tag! Set index! Block offset!

Address:!

Figure: Memory addresses. Image credit
CS:APP

6/29

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Strengths

▶ Blocks can go into any
of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

▶ Only need to search
across E tags. Avoids
costly searching
across all valid tags.

▶ Avoids conflict misses
due to unfortunate
access patterns.

7/29

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:
▶ C = 32KB L1 data cache

per core

▶ S = 64 = 26 sets/cache
(s = 6 bits)

▶ E = 8 = 23 ways/set

▶ B = 64 = 26 bytes/block
(b = 6 bits)

▶ C = S ∗ E ∗ B

▶ Assuming memory
addresses are m = 48,
then tag size
t = m − s − b =
48 − 6 − 6 = 36 bits.

8/29

E-way set-associative cache

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 0:"

B = 2b bytes"
per cache block"

E lines per set"

S = 2s sets"

t tag bits"
per line"

1 valid bit"
per line"

Cache size: C = B x E x S data bytes!

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set 1:"

• • •"

• • •" B–1"1"0"

• • •" B–1"1"0"

Valid"

Valid"

Tag"

Tag"
Set S -1:"

• • •"
• • •"

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

9/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

10/29

Cache hits

Memory access is serviced from cache

▶ Hit rate = Numberofhits
Numberofmemoryaccesses

▶ Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)

11/29

Cache misses: metrics

Memory access cannot be serviced from cache

▶ Miss rate = Numberofmisses
Numberofmemoryaccesses

▶ Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

▶ Average memory access time = hit time + miss rate × miss penalty

12/29

Cache misses: Classification

Compulsory misses

▶ First access to a block of memory will miss because cache is cold.

Conflict misses
▶ Multiple blocks map (hash) to the same cache set.
▶ Fully associative caches have no such conflict misses.

Capacity misses

▶ Occurs when the set of active cache blocks (working set) is larger than the
cache.

▶ Direct mapped caches have no such capacity misses.

13/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

14/29

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy

▶ The number of sets in
cache is
S = 2s = 22 = 4.

▶ A hash function that
limits exactly where a
block can go.

▶ In direct-mapped
cache, blocks can go
into only one of E = 1
way.

▶ No cache replacement
policy is needed.

15/29

Associative caches

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy

▶ Blocks can go into any
of E ways

▶ Here, E = 3
▶ Good for capturing

temporal locality.
▶ If all

ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for
replacement?

16/29

Cache replacement policies for associative caches

FIFO: First-in, first-out
▶ Evict the cache line that was placed the longest ago.
▶ Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used

▶ Evict the cache line that was last accessed longest ago.
▶ Needs a counter on each cache line, and/or a global counter (e.g., program

counter).

17/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

18/29

Policies for writes from CPU to memory
How to deal with write-hit? How to deal with write-miss?

▶ Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

▶ No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

▶ Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

▶ Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:
▶ Simple: write-through + no-write-allocate.
▶ Complex: write-back + write-allocate.

19/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

20/29

Cache-friendly code

Algorithms can be written so that
they work well with caches

▶ Maximize hit rate
▶ Minimize miss rate
▶ Minimize eviction counts

Do so by:

▶ Increasing spatial locality.
▶ Increasing temporal locality.

Advanced optimizing compilers can
automatically make such
optimizations

▶ GCC optimizations
▶ https:

//gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

▶ -floop-interchange

▶ -floop-block

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

21/29

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality"

▶ Loop interchange increases spatial locality.
▶ In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
▶ In practice, programmers do not have to worry about this optimization.
▶ Optimized automatically in GCC by compiler flag -floop-interchange

and -O3.

22/29

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality"

▶ Cache blocking increases temporal locality.
▶ In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
▶ In practice, programmers do not have to worry about this optimization.
▶ Optimized automatically in GCC by compiler flag -floop-block. But it is

not part of default optimizations such as -O3 so you have to remember to set
it.

23/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

24/29

Multilevel cache hierarchies

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 0!

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 3!

…!

L3 unified cache!
(shared by all cores)!

Main memory!

Processor package!

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

▶ L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

▶ L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

▶ L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

25/29

Cache oblivious algorithms

The challenge in writing code / compiling programs to take advantage of
caches:
▶ Programmers do not easily have information about target machine.
▶ Compiling binaries for every envisioned target machine is costly.

26/29

Matrix transpose baseline algorithm: iteration

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3



B = A⊺ =


a0,0 a1,0 a2,0 a3,0
a0,1 a1,1 a2,1 a3,1
a0,2 a1,2 a2,2 a3,2
a0,3 a1,3 a2,3 a3,3



1 for (size_t i=0; i<n; i++) {
2 for (size_t j=0; j<n; j++) {
3 B[j*n + i] = A[i*n + j];
4 }
5 }

27/29

Matrix transpose via recursion

A =

[
A0,0 A0,1
A1,0 A1,1

]
=


a0,0 a0,1
a1,0 a1,1

a0,2 a0,3
a1,2 a1,3

a2,0 a2,1
a3,0 a3,1

a2,2 a2,3
a3,2 a3,3



B = A⊺ =

[
A⊺

0,0 A⊺
1,0

A⊺
0,1 A⊺

1,1

]
=


a0,0 a1,0
a0,1 a1,1

a2,0 a3,0
a2,1 a3,1

a0,2 a1,2
a0,3 a1,3

a2,2 a3,2
a2,3 a3,3



Strategy:

▶ Divide and conquer large matrix to
transpose into smaller transpositions.

▶ After some recursion, problem will fit
well inside cache capacity.

▶ Once enough locality exists withing
subroutine, switch to plain iterative
approach.

Advantages:

▶ No need to know about cache capacity
and parameters beforehand.

▶ Works well with deep multilevel cache
hierarchies: different amounts of
locality for each cache level.

28/29

Table of contents
Announcements
Cache placement policy (how to find data at address for read and write hit)

Set-associative cache
Cache performance metrics: hits, misses, evictions

Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory
Cache-friendly code

Loop interchange
Cache blocking

Multilevel cache hierarchies
Cache oblivious algorithms

Memory hierarchy implications for software-hardware abstraction

29/29

Memory hierarchy implications for software-hardware abstraction
It is not entirely true the architecture can hide details of microarchitecture
Even less true going forward. What to do?

Application level recommendations

▶ Use industrial strength, optimized libraries compiled for target machine.

▶ Lapack, Linpack, Matlab, Python SciPy, NumPy...

▶ https://people.inf.ethz.ch/markusp/teaching/
263-2300-ETH-spring11/slides/class08.pdf

Algorithm level recommendations
Deploy cache-oblivious algorithm implementations.

Compiler level recommendations

▶ Enable compiler optimizations—e.g., -O3, -floop-interchange, -floop-block.

▶ https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Announcements
	Cache placement policy (how to find data at address for read and write hit)
	Set-associative cache

	Cache performance metrics: hits, misses, evictions
	Cache hits
	Cache misses

	Cache replacement policy (how to find space for read and write miss)
	Direct-mapped cache need no cache replacement policy
	Associative caches need a cache replacement policy (e.g., FIFO, LRU)

	Policies for writes from CPU to memory
	Cache-friendly code
	Loop interchange
	Cache blocking

	Multilevel cache hierarchies
	Cache oblivious algorithms

	Memory hierarchy implications for software-hardware abstraction

