
1/34

The basics of logic design

Yipeng Huang

Rutgers University

April 20, 2023

2/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

3/34

Announcements

Class session plan

I 4/20, 4/24, 4/27: Diving deeper: Digital logic. (CS:APP Chapter 4.2)
(Recommended reading: Patterson & Hennessy, Computer organization and
design, appendix on "The Basics of Logic Design." Available online via
Rutgers Libraries)

I 5/1: Survey of advanced topics in computer architecture.

4/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

5/34

Cache-friendly code

Algorithms can be written so that
they work well with caches

I Maximize hit rate
I Minimize miss rate
I Minimize eviction counts

Do so by:

I Increasing spatial locality.
I Increasing temporal locality.

Advanced optimizing compilers can
automatically make such
optimizations

I GCC optimizations
I https:

//gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

I -floop-interchange
I -floop-block

6/34

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality"

I Loop interchange increases spatial locality.
I In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler �ag -floop-interchange

and -O3 .

7/34

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality"

I Cache blocking increases temporal locality.
I In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
I In practice, programmers do not have to worry about this optimization.
I Optimized automatically in GCC by compiler �ag -floop-block . But it is

not part of default optimizations such as -O3 so you have to remember to set
it.

8/34

Multilevel cache hierarchies

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

I L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

I L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

I L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases asE-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

9/34

Cache oblivious algorithms

The challenge in writing code / compiling programs to take advantage of
caches:

I Programmers do not easily have information about target machine.
I Compiling binaries for every envisioned target machine is costly.

10/34

Matrix transpose baseline algorithm: iteration

A =

2

6
6
4

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

3

7
7
5

B = A | =

2

6
6
4

a0;0 a1;0 a2;0 a3;0

a0;1 a1;1 a2;1 a3;1

a0;2 a1;2 a2;2 a3;2

a0;3 a1;3 a2;3 a3;3

3

7
7
5

1 for (size_t i=0; i<n; i++) {
2 for (size_t j=0; j<n; j++) {
3 B[j * n + i] = A[i * n + j];
4 }
5 }

11/34

Matrix transpose via recursion

A =
�
A0;0 A0;1

A1;0 A1;1

�
=

2

6
6
4

a0;0 a0;1

a1;0 a1;1

a0;2 a0;3

a1;2 a1;3

a2;0 a2;1

a3;0 a3;1

a2;2 a2;3

a3;2 a3;3

3

7
7
5

B = A | =
�
A |

0;0 A |
1;0

A |
0;1 A |

1;1

�
=

2

6
6
4

a0;0 a1;0

a0;1 a1;1

a2;0 a3;0

a2;1 a3;1

a0;2 a1;2

a0;3 a1;3

a2;2 a3;2

a2;3 a3;3

3

7
7
5

Strategy:

I Divide and conquer large matrix to
transpose into smaller transpositions.

I After some recursion, problem will �t
well inside cache capacity.

I Once enough locality exists withing
subroutine, switch to plain iterative
approach.

Advantages:

I No need to know about cache capacity
and parameters beforehand.

I Works well with deep multilevel cache
hierarchies: different amounts of
locality for each cache level.

12/34

Memory hierarchy implications for software-hardware abstraction
It is not entirely true the architecture can hide details of microarchitecture
Even less true going forward. What to do?

Application level recommendations

I Use industrial strength, optimized libraries compiled for target machine.

I Lapack, Linpack, Matlab, Python SciPy, NumPy...

I https://people.inf.ethz.ch/markusp/teaching/
263-2300-ETH-spring11/slides/class08.pdf

Algorithm level recommendations
Deploy cache-oblivious algorithm implementations.

Compiler level recommendations

I Enable compiler optimizations— e.g., -O3 , -floop-interchange , -floop-block .

I https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

13/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

14/34

Computer organization
Layer cake

I Society

I Human beings

I Applications

I Algorithms

I High-level programming languages

I Interpreters

I Low-level programming languages

I Compilers

I Architectures

I Microarchitectures

I Sequential/combinational logic

I Transistors

I Semiconductors

I Materials science

I Physics

I Mathematics

15/34

Why binary

Figure: Source: CS:APP

	Announcements
	Cache-friendly code
	Loop interchange
	Cache blocking
	Multilevel cache hierarchies
	Cache oblivious algorithms
	Memory hierarchy implications for software-hardware abstraction

	Transistors: The building block of computers
	Combinational logic
	Basic gates
	More-than-2-input gates

	Functional completeness
	The set of logic gates {NOT, AND, OR} is universal
	The NAND gate is universal
	The NOR gate is universal

