
1/34

The basics of logic design

Yipeng Huang

Rutgers University

April 20, 2023

2/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

3/34

Announcements

Class session plan

▶ 4/20, 4/24, 4/27: Diving deeper: Digital logic. (CS:APP Chapter 4.2)
(Recommended reading: Patterson & Hennessy, Computer organization and
design, appendix on "The Basics of Logic Design." Available online via
Rutgers Libraries)

▶ 5/1: Survey of advanced topics in computer architecture.

4/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

5/34

Cache-friendly code

Algorithms can be written so that
they work well with caches

▶ Maximize hit rate
▶ Minimize miss rate
▶ Minimize eviction counts

Do so by:

▶ Increasing spatial locality.
▶ Increasing temporal locality.

Advanced optimizing compilers can
automatically make such
optimizations

▶ GCC optimizations
▶ https:

//gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

▶ -floop-interchange

▶ -floop-block

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

6/34

Loop interchange

Refer to textbook slides on "Rearranging loops to improve spatial locality"

▶ Loop interchange increases spatial locality.
▶ In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
▶ In practice, programmers do not have to worry about this optimization.
▶ Optimized automatically in GCC by compiler flag -floop-interchange

and -O3.

7/34

Cache blocking

Refer to textbook slides on "Using blocking to improve temporal locality"

▶ Cache blocking increases temporal locality.
▶ In PA5, fourth part "cacheBlocking" you can explore the impact of this on

matrix multiplication.
▶ In practice, programmers do not have to worry about this optimization.
▶ Optimized automatically in GCC by compiler flag -floop-block. But it is

not part of default optimizations such as -O3 so you have to remember to set
it.

8/34

Multilevel cache hierarchies

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 0!

Regs!

L1 !
d-cache!

L1 !
i-cache!

L2 unified cache!

Core 3!

…!

L3 unified cache!
(shared by all cores)!

Main memory!

Processor package!

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

▶ L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

▶ L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

▶ L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

9/34

Cache oblivious algorithms

The challenge in writing code / compiling programs to take advantage of
caches:
▶ Programmers do not easily have information about target machine.
▶ Compiling binaries for every envisioned target machine is costly.

10/34

Matrix transpose baseline algorithm: iteration

A =

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

B = A⊺ =

a0,0 a1,0 a2,0 a3,0
a0,1 a1,1 a2,1 a3,1
a0,2 a1,2 a2,2 a3,2
a0,3 a1,3 a2,3 a3,3

1 for (size_t i=0; i<n; i++) {
2 for (size_t j=0; j<n; j++) {
3 B[j*n + i] = A[i*n + j];
4 }
5 }

11/34

Matrix transpose via recursion

A =

[
A0,0 A0,1
A1,0 A1,1

]
=

a0,0 a0,1
a1,0 a1,1

a0,2 a0,3
a1,2 a1,3

a2,0 a2,1
a3,0 a3,1

a2,2 a2,3
a3,2 a3,3

B = A⊺ =

[
A⊺

0,0 A⊺
1,0

A⊺
0,1 A⊺

1,1

]
=

a0,0 a1,0
a0,1 a1,1

a2,0 a3,0
a2,1 a3,1

a0,2 a1,2
a0,3 a1,3

a2,2 a3,2
a2,3 a3,3

Strategy:

▶ Divide and conquer large matrix to
transpose into smaller transpositions.

▶ After some recursion, problem will fit
well inside cache capacity.

▶ Once enough locality exists withing
subroutine, switch to plain iterative
approach.

Advantages:

▶ No need to know about cache capacity
and parameters beforehand.

▶ Works well with deep multilevel cache
hierarchies: different amounts of
locality for each cache level.

12/34

Memory hierarchy implications for software-hardware abstraction
It is not entirely true the architecture can hide details of microarchitecture
Even less true going forward. What to do?

Application level recommendations

▶ Use industrial strength, optimized libraries compiled for target machine.

▶ Lapack, Linpack, Matlab, Python SciPy, NumPy...

▶ https://people.inf.ethz.ch/markusp/teaching/
263-2300-ETH-spring11/slides/class08.pdf

Algorithm level recommendations
Deploy cache-oblivious algorithm implementations.

Compiler level recommendations

▶ Enable compiler optimizations—e.g., -O3, -floop-interchange, -floop-block.

▶ https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring11/slides/class08.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

13/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

14/34

Computer organization
Layer cake

▶ Society
▶ Human beings
▶ Applications
▶ Algorithms
▶ High-level programming languages
▶ Interpreters
▶ Low-level programming languages
▶ Compilers
▶ Architectures
▶ Microarchitectures
▶ Sequential/combinational logic
▶ Transistors
▶ Semiconductors
▶ Materials science
▶ Physics
▶ Mathematics

15/34

Why binary

Figure: Source: CS:APP

16/34

To build logic, we need switches

Vacuum tubes a.k.a. valves

Figure: Source: By Stefan Riepl (Quark48) -
Self-photographed, CC BY-SA 2.0
https://commons.wikimedia.org/w/
index.php?curid=14682022

Transistors

▶ The first transistor. Developed at
Bell Labs, Murray Hill, New Jeresy

▶ https://www.bell-labs.com/
about/locations/
murray-hill-new-jersey-usa/

https://commons.wikimedia.org/w/index.php?curid=14682022
https://commons.wikimedia.org/w/index.php?curid=14682022
https://www.bell-labs.com/about/locations/murray-hill-new-jersey-usa/
https://www.bell-labs.com/about/locations/murray-hill-new-jersey-usa/
https://www.bell-labs.com/about/locations/murray-hill-new-jersey-usa/

17/34

MOSFETs

MOS: Metal-oxide-semiconductor
▶ A sandwich of conductor-insulator-semiconductor.

FET: Field-effect transistor
▶ Gate exerts electric field that changes conductivity of semiconductor.

18/34

NMOS, PMOS, CMOS

PMOS: P-type MOS

▶ positive gate voltage, acts as open
circuit (insulator)

▶ negative gate voltage, acts as short
circuit (conductor)

NMOS: N-type MOS

▶ positive gate voltage, acts as short
circuit (conductor)

▶ negative gate voltage, acts as open
circuit (insulator)

CMOS: Complementary MOS

▶ A combination of NMOS and PMOS to build logical gates such as NOT,
AND, OR.

▶ We’ll go to slides posted in supplementary material to see how they work.

19/34

Combinational vs. sequential logic

Combinational logic

▶ No internal state nor memory
▶ Output depends entirely on input
▶ Examples: NOT, AND, NAND, OR,

NOR, XOR, XNOR gates, decoders,
multiplexers.

Sequential logic

▶ Has internal state (memory)
▶ Output depends on the inputs and

also internal state
▶ Examples: latches, flip-flops, Mealy

and Moore machines, registers,
pipelines, SRAMs.

20/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

21/34

NOT gate

A A

A A
0 1
1 0

Table: Truth table for NOT gate

22/34

AND gate, NAND gate

A
B

AB

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

Table: Truth table for AND gate

A
B

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

Table: Truth table for NAND gate

23/34

OR gate, NOR gate

A
B

A + B

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

Table: Truth table for OR gate

A
B

A + B

A B A + B
0 0 1
0 1 0
1 0 0
1 1 0

Table: Truth table for NOR gate

24/34

XOR gate, XNOR gate

A
B

A ⊕ B

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Table: Truth table for XOR gate

A
B

A ⊕ B

A B A ⊕ B
0 0 1
0 1 0
1 0 0
1 1 1

Table: Truth table for XNOR gate

25/34

More-than-2-input AND gate

A
B

AB

C
ABC

A B C ABC
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table: Truth table for three-input AND gate

26/34

More-than-2-input OR gate

A
B

A + B

C
A + B + C

A B C A + B + C
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table: Truth table for three-input OR gate

27/34

Table of contents
Announcements

Cache-friendly code
Loop interchange
Cache blocking
Multilevel cache hierarchies
Cache oblivious algorithms
Memory hierarchy implications for software-hardware abstraction

Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates

Functional completeness
The set of logic gates {NOT, AND, OR} is universal
The NAND gate is universal
The NOR gate is universal

28/34

The set of logic gates {NOT, AND, OR} is universal

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Figure: Source: CS:APP

29/34

The set of logic gates {NOT, AND, OR} is universal

▶ Any truth table can
be expressed as
sum of products
form.

▶ Write each row
with output 1 as a
product (minterm).

▶ Sum the products
(minterm).

▶ Forms a
disjunctive normal
form (DNF).

▶ D = ABC + ABC
▶ Always only needs

NOT, AND, OR
gates.

▶ Supplementary
slides example...

16

Logical Completeness
Can implement ANY truth table with AND, OR, NOT.

A B C D

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

1. AND combinations
that yield a "1" in the
truth table.

2. OR the results
of the AND gates.

Sum of products
OR of AND clauses

30/34

The set of logic gates {NOT, AND, OR} is universal
▶ Any truth table can

be expressed as
sum of products
form.

▶ Write each row
with output 1 as a
product (minterm).

▶ Sum the products
(minterm).

▶ Forms a
disjunctive normal
form (DNF).

▶ D = ABC + ABC
▶ Always only needs

NOT, AND, OR
gates.

▶ Supplementary
slides example...

Bit equal
a

b

eq

Figure: Source: CS:APP

31/34

The NAND gate is universal

NOT gate as a single NAND gate

A A
=

A
A

A A AA AA
0 1 0 1
1 0 1 0

Table: A = AA

AND gate as two NAND gates

A
B

AB
=

A
B

AB
AB

A B AB AB AB
0 0 0 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 0 1

Table: AB = AB

32/34

The NAND gate is universal

De Morgan’s Law

A B A B A B A + B A + B
0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 0 1 0

Table: A B = A + B

OR gate as three NAND gates

A
B

A + B
=

A
A

B
B

A B = A + B

33/34

The NOR gate is universal

NOT gate as a single NOR gate

A A
=

A
A

A A A + A A + A
0 1 0 1
1 0 1 0

Table: A = A + A

OR gate as two NOR gates

A
B

AB
=

A
B

A + B
A + B

A B A + B A + B A + B
0 0 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 0 1

Table: A + B = A + B

34/34

The NOR gate is universal

De Morgan’s Law

A B A B A + B AB AB
0 0 1 1 1 0 1
0 1 1 0 1 0 1
1 0 0 1 1 0 1
1 1 0 0 0 1 0

Table: A + B = AB

AND gate as three NOR gates

A
B

AB
=

A
A

B
B

A + B = AB

	Announcements
	Cache-friendly code
	Loop interchange
	Cache blocking
	Multilevel cache hierarchies
	Cache oblivious algorithms
	Memory hierarchy implications for software-hardware abstraction

	Transistors: The building block of computers
	Combinational logic
	Basic gates
	More-than-2-input gates

	Functional completeness
	The set of logic gates {NOT, AND, OR} is universal
	The NAND gate is universal
	The NOR gate is universal

