
2ND WORKSHOP ON DEMOCRATIZING DOMAIN-SPECIFIC ACCELERATORS (WDDSA 2023) 1

Towards an Accelerator for Differential and
Algebraic Equations Useful to Scientists

Jonathan Garcia-Mallen, Shuohao Ping, Alex Miralles-Cordal, Ian Martin, Mukund Ramakrishnan, Yipeng Huang

Abstract—We discuss our preliminary results in building a
configurable accelerator for differential equation time stepping
and iterative methods for algebraic equations. Relative to prior
efforts in building hardware accelerators for numerical methods,
our focus is on the following: 1) Demonstrating a higher order
of numerical convergence that is needed to actually support
existing numerical algorithms. 2) Providing the capacity for wide
vectors of variables by keeping the hardware design components
as simple as possible. 3) Demonstrating configurable hardware
support for a variety of numerical algorithms that form the
core of scientific computation libraries. These efforts are toward
the goal of making the accelerator democratically accessible by
computational scientists.

Index Terms—Reconfigurable hardware, Iterative methods,
Hyperbolic equations

I. INTRODUCTION

The central challenge of making domain-specific accelera-
tors (DSAs) useful to many people is to find the right balance
between configurability and ease-of-use. In one extreme, accel-
erators for cryptographic ciphers, media codecs, and network
protocols have predefined standardized functionality and are
already widely useful for consumers. In the other extreme,
DSAs such as field-programmable gate arrays (FPGAs) are
blank canvases that can only be harnessed by engineers.
Democratized use of DSAs is an ongoing search for ways
to constrain the configurability of hardware that make such
hardware thereby useful for a broader set of computer users.

Scientific computing is one of the most impactful appli-
cations of accelerators. Democratized use of DSAs in this
domain would entail allowing computational scientists to take
a numerical problem and turn it into a problem-specific
accelerator configuration. Despite recent progress, the state-
of-the-art falls short of that goal in several ways: 1) GPUs are
the only kind of DSA that are useful to most computational sci-
entists. Despite the fact that FPGAs are widely available, few
scientists can dedicate the engineering effort to map problems
to configurable hardware. 2) Outside of a handful of examples
where GPUs can be called from the languages and libraries
that scientists use [1], [2], most of the functionality of GPUs
needs kernel-level programming or at least familiarity with
CUDA libraries. 3) In cases where specialized hardware has
been shown to help with scientific computing, the case studies
fail to demonstrate numerical properties that are important to
computational scientists. The goal should be to demonstrate

J. Garcia-Mallen, S. Ping, A. Miralles-Cordal, I. Martin, M. Ramakrishnan,
and Y. Huang are with the Department of Computer Science, Rutgers
University, New Brunswick, New Jersey

the expected convergence rates to the correct answers for a
variety of problems.

Fortunately, the algorithms in scientific computing provide
a clear path for democratic use of configurable DSAs. The
heart of nearly all scientific computing numerical methods is
a differential equation time stepping and/or an iterative method
solver for algebraic equations. These numerical kernels feature
common traits that DSAs can directly support: 1) A wide
vector of (thousands of) variables is updated over many (up
to millions of) iterations to reach a converged steady state
solution. 2) The vector elements are interrelated via a fixed,
sparse stencil. 3) The vector elements change each iteration by
relatively small increments relative the full range of values.

In this work, we build a DSA that targets the above traits and
has an adequate degree of configurability to support a variety
of time stepping and iterative methods. We demonstrate the
ability to solve benchmark problems such as solving a non-
linear wave partial differential equation. The solver hardware
demonstrates a high degree of numerical convergence, that
is, a polynomial reduction of error relative to increasing the
number of algorithm iterations, an essential numerical property
that has not been demonstrated in prior work in configurable
DSAs for scientific computing [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. The hardware design is able to support vector
sizes of thousands of variables to provide low-latency solutions
for real-world problems.

Equally important, we envision democratic use of such a
DSA. We have made steps toward an end-to-end pipeline that
supports numerical algorithms written in the Julia language, an
increasingly important domain-specific language for computa-
tional science. Selected time stepping and iterative methods
in that language can be mapped to the DSA without manual
configuration, enabling access by computational scientists.

II. TUTORIAL: GENERATING SINE AND COSINE
BY TALLYING INCREMENTS

This section gives a tutorial example of generating the
sine and cosine functions using hardware cells that can be
composed as building blocks for numerical algorithms. These
hardware cells consist of only a few registers, but they can
form a variety of differential equation time stepping and
algebraic equation iterative methods, with each algorithm step
taking place within a fixed number of hardware clock cycles.
We also validate that the hardware design achieves a high
degree of numerical convergence, a property that has not been
emphasized in prior work.

2ND WORKSHOP ON DEMOCRATIZING DOMAIN-SPECIFIC ACCELERATORS (WDDSA 2023) 2

dy
sin(t)

dz

dy
cos(t)

dz

-

Fig. 1. Two hardware cells in a feedback loop for generating sine and cosine
as the solution to an ODE IVP.

The sine and cosine functions can be generated as solu-
tions to the ordinary differential equation (ODE) initial value
problem (IVP):

y(t) =

[
sin t
cos t

]
,
dy

dt
= f(y) =

[
0 1
−1 0

]
y, y(0) =

[
0
1

]
(1)

A. A simplistic first-order approach in hardware

The most basic differential equation time stepping numerical
method for IVPs is the Euler method:

yn+1 = yn + hf(tn, yn),

where yn is the value of y at time step n, and h is the duration
of each time step.

This Euler method time stepping can be realized using a cell
with a (signed integer) register y holding the present value of
y. The hardware cell takes as input dy, an update to y, and
gives as output dz, an indication of how much y has changed
in a time step. The cell would perform each time step in two
clock cycles as follows:

phase 1: [dz,r] <= r + dt*y;
phase 2: y <= y + dy;

In the above register-transfer level specification, r is an
accumulator register tracking changes to y; [dz,r] indicates
that dz is the signed most-significant bits of the sum while r
is the residual unsigned least-significant bits. dz is transmitted
to other cells as output while r is stored locally in the cell
representing a remainder. dt encodes h, and is scaled so that
it is a power of two such that bitshifts supplant costly integer
multiplication. The sin t and cos t components of vector y in
Equation (1) would each be integrated in two cells connected
in a feedback loop as indicated in Fig. 1. Fig. 2 shows the
internal state of the cell for sin t and its output.

The hardware approach demonstrated here is called a digital
differential analyzer and it has a history dating to early digital
computers in the mid-20th century [13], [14], [15], [16].

B. Generalized hardware cell for higher-order integration

In practice, solving ODE IVPs needs higher order inte-
gration methods where a linear increase in time stepping
resolution leads to a polynomial reduction in the solution error.
More specifically, we say an integration method is of order s if
an increase in resolution by factor h leads to a error reduction
by factor hs. Fig. 3 shows the effect of higher order integration
on solution accuracy.

Higher order integration can be done using the hardware
cells by correctly generalizing the update rules. Phase 1 of

-10
-5
0
5

10
15
20

0 1 2 3 4 5 6 7 8

Time (radians)

Internal state of cell approximating Sine

dut.sin.dy dut.sin.r

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8

Time (radians)

8-bit cell approximation of Sine

Expected value Hardware approximation

Fig. 2. The state and output of a cell-based approach for generating the sine
function as a solution to an ODE. The output error relative to the expected
value is due to a limited 8-bit number representation (roundoff error) and also
a low-order integration method (truncation error). The error is asymptotically
removed by improving both error sources.

0 1 2 3 4 5 6 7
Time (radians)

2

0

2

Closed-form expected value
1st-order Euler method
2nd-order midpoint method
2nd-order Heun's method
4th-order Runga-Kutta method

Fig. 3. Software and hardware solutions for generating the sine function,
compared to the expected value. In the limited number of timesteps used to
integrate across the time domain of 8 radians here, the lowest order Euler
integration method has the greatest truncation error.

2 4 6 8 10 12 14
log(number of steps)

30

20

10

0

lo
g(

RM
SE

 o
f a

pp
ro

xi
m

at
io

n)

1st-order Euler method
2nd-order midpoint method
2nd-order Heun's method
4th-order Runga-Kutta method
4th-order hardware cell approximation

Fig. 4. Validation of up to fourth-order convergence for a hardware solution;
the solution reaches the accuracy limited by the 64-bit number representation.

each time step stays the same as the Euler cell, while for a
method of order s, phases i = 2 through i = s perform the
following register transfers:

phase i: dyi−1 <= dy;

[dz,r]<=r+dt*(y+
i−2∑
j=1

aij*dyj+ai,i−1*dy);

2ND WORKSHOP ON DEMOCRATIZING DOMAIN-SPECIFIC ACCELERATORS (WDDSA 2023) 3

Finally, the iteration ends with a phase i = s+ 1:

phase s+1: y <= y +
s−1∑
j=1

bj*dyj + bs*dy;

The subscripted coefficients a and b in these rules come from
the standard Butcher tableaus for Runga-Kutta methods [1].

Historically, digital differential analyzers routinely per-
formed second- or third-order integration, though yet higher
order integration was not done due to hardware complexity.
With the above correct generalization (validated in Fig. 4),
arbitrarily high order Runga-Kutta integration is now possible
in modern FPGAs.

The key advantage of the hardware solution is that every
numerical time step is completed in s+ 1 clock periods. The
example in this section takes 2000 clock cycles amounting
to 16µs on a commodity FPGA, roughly 10× faster than a
compiled software solution. The next section will discuss how
this advantage scales with larger problem sizes.

III. DEMONSTRATION OF SPATIAL AND TEMPORAL
CONVERGENCE FOR PDES

In this section, we describe how a variety of standard nu-
merical methods for scientific computing have clear mappings
in the proposed configurable accelerator.

Partial differential equation (PDE) solver schemes typically
begin with spatial discretization, after which the problem
becomes solving a system of (generally nonlinear) ODEs. The
order of convergence is also an important property for spatial
discretization; here, it means an increase in spatial resolution
leads to a polynomial decrease in error. In the configurable
accelerator, a hardware cell would be instantiated for every
spatial grid point. Higher-order spatial discretization schemes
can be realized by different rules on how each cell’s dz outputs
get routed to neighboring cells’ dy inputs. Finally, the tempo-
ral time stepping internal to each hardware cell representing
a spatial grid point is done using high order Runga-Kutta
schemes discussed in the previous tutorial section.

In the remainder of the section we demonstrate spatial and
temporal convergence to the correct solution for a range of
PDEs including a first-order advection equation, a second-
order wave equation, and a nonlinear wave equation.

A. First-order advection PDE

The advection equation in one dimension has the form:

∂y

∂t
= −∂y

∂x

First-order spatial discretization for this equation includes the
upwind scheme, while second-order methods include the Mac-
Cormack method and the Lax-Wendroff method. Both second-
order methods are realized using the proposed accelerator
hardware by routing the dz and dy increments as follows:

For the MacCormack method, the register transfers for the
cell located at spatial grid point k are:

phase 1: dyk <= - (dzk - dzk−1);

phase 2: dyk <= - (dzk+1 - dzk);

1 2 3 4 5 6
log(number of spatial grid points)

5

4

3

2

lo
g(

RM
SE

 o
f a

pp
ro

xi
m

at
io

n)

1st-order upwind scheme
2nd-order Lax-Wendroff method
2nd-order MacCormack method
2nd-order leapfrog method
2nd-order hardware cell approximation

Fig. 5. Validation of second-order spatial convergence for a MacCormack
hardware scheme for the one-dimensional advection PDE.

0 1 2 3 4 5 6
x (radians)

0

2

4

6

8

u
(m

/s
)

nu=0.25, nt=257, nx=33, tmax=0.5s
i=0 hardware
i=0 analytical
i=20 hardware
i=20 analytical
i=40 hardware
i=40 analytical
i=60 hardware
i=60 analytical
i=80 hardware
i=80 analytical
i=100 hardware
i=100 analytical
i=120 hardware
i=120 analytical
i=140 hardware
i=140 analytical
i=160 hardware
i=160 analytical
i=180 hardware
i=180 analytical
i=200 hardware
i=200 analytical
i=220 hardware
i=220 analytical
i=240 hardware
i=240 analytical

Fig. 6. Validation of correct solution for the nonlinear Burgers’ PDE.

The above specifications of how neighboring cells update each
other is paired with Heun’s method second-order Runga-Kutta
time stepping to complete the PDE numerical scheme.

For the Lax-Wendroff method, the register transfers are:

phase 1: dyk <= dzk+1/2 - dzk + dzk−1/2;

phase 2: dyk <= - (dzk+1 - dzk−1) / 2;

The above is paired with the midpoint method second-order
Runga-Kutta time stepping to complete the scheme.

The convergence of the hardware solution to the correct
solution with second-order accuracy in spatial resolution is
validated in Fig. 5. This type of convergence on a high-
resolution grid was never demonstrated in prior work on digital
differential analyzers due to the high hardware cost before
modern FPGAs, and recent work on PDE accelerators have
not emphasized the importance of spatial convergence.

B. Second-order wave PDE

The wave equation is a second-order hyperbolic PDE. In
one dimension it has the form:

∂2y

∂t2
=

∂2y

∂x2

A typical second-order discretization scheme for the wave
equation is the finite-difference time-domain (FDTD) method,
which has widespread use in electromagnetics simulation.
In fact, if the scheme is defined on a single spatial grid
point, the problem reduces to the sine-cosine pair given in
the previous tutorial section. We implemented the FDTD
scheme in the proposed hardware accelerator and observed
the expected second-order in space and second-order in time
rate of convergence.

2ND WORKSHOP ON DEMOCRATIZING DOMAIN-SPECIFIC ACCELERATORS (WDDSA 2023) 4

C. Nonlinear Burgers’ PDE

Finally, in order to demonstrate that nonlinear problems can
be handled as well, we demonstrate solving the quasilinear
hyperbolic Burgers’ equation:

∂y

∂t
= −y

∂y

∂x

This equation is important in fluid dynamics as it forms the
nonlinear core of the Navier-Stokes equations.

Following spatial discretization, the integration of the non-
linear y2 term in the PDE is done using digital differential an-
alyzer cells configured to be variable-variable multipliers [16].
An example hardware solution result is given in Fig. 6. The
expected order of convergence is also validated against the
purely software numerical scheme.

A hardware synthesis study shows that on the order of one
thousand cells can be instantiated on a commodity FPGA. Yet
larger PDE spatial grids can be accommodated in the hardware
scheme by multiplexing the cells, using more clock cycles for
each algorithm time step in favor of greater problem size.

IV. A HIGH-LEVEL INTERFACE TO THE ACCELERATOR

This section elaborates our pipeline from the user interface
to the hardware cells. We chose the Julia package Differen-
tialEquations.jl as the user interface. Alternatives have not used
accelerators or would be cumbersome for a scientist who is
not already familiar with lower-level programming. Finally, we
discuss the state of our pipeline (Fig. 7) and the challenges
we foresee.

Julia, Python, and MATLAB are the primarily languages
used by our envisioned users as each of these languages
have standard interfaces to describe ODEs and PDEs. Among
these, Julia is increasingly important: Julia’s PDE solving
ecosystem has coalesced around the package DifferentialE-
quations.jl [17]. The package exposes over fifty different PDE
solvers, including GPU methods [18]. We can thus leverage
existing accelerator work. In contrast, Python/SciPy does not
prominently feature GPU acceleration for PDEs, and while
MATLAB offers GPU arrays, they are not immediately geared
for solving PDEs. Taken together, Julia is the best high-level
language for us to target.

We have a successful proof of concept where numerical
operations are already offloaded from the Julia language to an
FPGA. Preliminary studies have been done on a ZYNQ-7010
development board; it has an FPGA and an ARM Cortex-A9
on the same die. The ARM core coordinates the configuration
of the FPGA and the communications with the host computer
running Julia. The actual arithmetic hardware reside on the
FPGA, and AXI exposes registers to the C code on the ARM
core.

Our end goal is a pipeline from DifferentialEquations.jl to
an FPGA and back. We want to take the data that the package’s
interface expects, send it to the ARM core, process it using
hardware cells, and communicate the result back. These efforts
are toward a configurable accelerator for scientific computation
that is accessible to scientists as the end users.

Fig. 7. An envisionsed pipeline from DifferentialEquations.jl to the FPGA.

REFERENCES

[1] Karsten Ahnert, Denis Demidov, and Mario Mulansky. Solving ordinary
differential equations on GPUs. In Numerical Computations with GPUs,
2014.

[2] Tim Besard, Christophe Foket, and Bjorn De Sutter. Effective extensible
programming: Unleashing Julia on gpus. IEEE Transactions on Parallel
and Distributed Systems, 30(4):827–841, 2019.

[3] Wang Chen, Panos Kosmas, Miriam Leeser, and Carey Rappaport. An
FPGA implementation of the two-dimensional finite-difference time-
domain (FDTD) algorithm. In Proceedings of the 2004 ACM/SIGDA
12th International Symposium on Field Programmable Gate Arrays,
FPGA ’04, page 213–222. Association for Computing Machinery, 2004.

[4] Chen Huang, Frank Vahid, and Tony Givargis. A custom FPGA
processor for physical model ordinary differential equation solving.
IEEE Embedded Systems Letters, 3(4):113–116, 2011.

[5] Chen Huang, Bailey Miller, Frank Vahid, and Tony Givargis. Synthesis
of networks of custom processing elements for real-time physical system
emulation. ACM Trans. Des. Autom. Electron. Syst., 18(2), apr 2013.

[6] Chen Huang, Frank Vahid, and Tony Givargis. Automatic synthesis of
physical system differential equation models to a custom network of
general processing elements on FPGAs. ACM Trans. Embed. Comput.
Syst., 13(2), sep 2013.

[7] Jaeha Kung, Yun Long, Duckhwan Kim, and Saibal Mukhopadhyay. A
programmable hardware accelerator for simulating dynamical systems.
In Proceedings of the 44th Annual International Symposium on Com-
puter Architecture, ISCA ’17, page 403–415, 2017.

[8] Thomas Chen, Jacob Botimer, Teyuh Chou, and Zhengya Zhang. An
SRAM-based accelerator for solving partial differential equations. In
2019 IEEE Custom Integrated Circuits Conference (CICC), pages 1–4,
2019.

[9] Thomas Chen, Jacob Botimer, Teyuh Chou, and Zhengya Zhang. A 1.87-
mm² 56.9-GOPS accelerator for solving partial differential equations.
IEEE Journal of Solid-State Circuits, PP:1–10, 01 2020.

[10] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner,
Juan Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal.
NERO: A near high-bandwidth memory stencil accelerator for weather
prediction modeling. In 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), pages 9–17, 2020.

[11] Junjie Mu and Bongjin Kim. A dynamic-precision bit-serial computing
hardware accelerator for solving partial differential equations using finite
difference method. IEEE Journal of Solid-State Circuits, 58(2):543–553,
2023.

[12] Jiajun Li, Yuxuan Zhang, Hao Zheng, and Ke Wang. FDMAX: An elas-
tic accelerator architecture for solving partial differential equations. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, ISCA ’23, 2023.

[13] Robert B. McGhee and Ragnar N. Nilsen. The extended resolution
digital differential analyzer: A new computing structure for solving
differential equations. IEEE Transactions on Computers, C-19(1):1–9,
1970.

[14] Paul William Baker. Algorithms for Higher Level Functions in Machine
Hardware. PhD thesis, AUS, 1976. AAI0596601.

[15] Philip George Mccrea. Raster Scan Computer Graphics and Incremental
Computing Systems. PhD thesis, AUS, 1976. AAI0596564.

[16] Bernd Ulmann. Analog Computing. De Gruyter Oldenbourg, Berlin,
Boston, 2022.

[17] Christopher Rackauckas and Qing Nie. DifferentialEquations.jl–a per-
formant and feature-rich ecosystem for solving differential equations in
Julia. Journal of Open Research Software, 5(1), 2017.

[18] Utkarsh Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Tim Gym-
nich, Adam R Gerlach, Alan Edelman, and Christopher Rackauckas.
Automated translation and accelerated solving of differential equations
on multiple GPU platforms. arXiv preprint arXiv:2304.06835, 2023.

